
Paper ID #38420

Engaging Female High School Students in the Frontiers of
Computing
Gordon Stein

Gordon Stein is currently a PhD student at Vanderbilt University. Previously, he served as a Senior Lecturer at Lawrence
Technological University, helping to improve introductory Computer Science courses and integrate emerging technologies
into the curriculum. At Vanderbilt's Institute for Software Integrated Systems, he has worked on projects combining
accessible, block-based programming with robots and mixed reality platforms for educational use. Gordon also has
experience bringing educational robotics into K-12 classrooms and summer programs. He is very excited to help make
STEM education more fun and engaging for students worldwide.

Isabella Gransbury

Devin Jean

Lauren Alvarez

Marnie Hill

Marnie Hill (Program Manager, former HS CS Teacher), has her M.Ed in Technology Education with 8 years of teaching
experience and 8 years experience in leading teacher professional development. She has several years of experience in
developing and maintaining effective relationships with teacher professional development programs, and site
coordinators, recruiting teachers and coordinating and training facilitators for PD workshops.

Veronica M Catete

Shuchi Grover

Tiffany Barnes (Distinguished Professor)

Brian Broll

Brian Broll is a Research Scientist at the Institute for Software Integrated Systems at Vanderbilt University. He holds a
Ph.D. from Vanderbilt University in Computer Science and a B.Sc. from Buena Vista University, majoring in mathematics
education. His research interests include computer science education and model-integrated computing.



Akos Ledeczi

Akos Ledeczi is a professor of computer science at Vanderbilt University. His research interests include wireless sensor
networks, cyber physical systems and computer science education.

© American Society for Engineering Education, 2022
Powered by www.slayte.com



Engaging Female High School Students
in the Frontiers of Computing

abstract

Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of
building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the
curriculum of a new, high school computer science course under development called Computer
Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles
course, we seek to dramatically expand access, especially for high school girls, to the most
exciting and emerging frontiers of computing, such as distributed computation, the internet of
things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on
curriculum provides an engaging introduction to these advanced topics in high school because
currently they are accessible only to CS majors in college. It also focuses on other 21st century
skills required to productively leverage computational methods and tools in virtually every
profession. To address the dire gender disparity in computing, the curriculum was designed to
engage female students by focusing on real world application domains, such as climate change
and health, by including social applications and by emphasizing collaboration and
teamwork.

Our paper describes the design of curricular modules on Distributed Computing,
IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be
collaborative, situated in contexts that are engaging to high school students, and often involve
real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from
North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated
virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD
workshops as well as student camps indicate high levels of engagement in and enthusiasm for the
curricular activities and topics. Post-intervention surveys suggest that these experiences generate
student interest exploring these ideas further and connections to areas of interest to students.

introduction & motivation

Computing has finally come of age as advances in the field drive the transformation of work,
commerce and everyday life. Distributed and cloud computing, artificial intelligence and machine
learning, autonomous systems, the internet of things and cybersecurity are some of the new
frontiers of computing that are fundamentally transforming how and where people work,



collaborate, communicate, shop, eat, bank, travel, consume news and entertainment and, quite
simply, live [1]. Yet, learning experiences that engage and expose high school students, and
especially those from historically marginalized groups, to these advanced computing concepts
and practices in interdisciplinary contexts are not available to teens. The AP Computer Science
Principles (CSP) high school course introduces students to computer science and programming
through a novice-friendly curriculum that appeals to learners from diverse backgrounds. What
should motivated students study after successful completion of AP CSP? The AP CSA class is
centered on syntax-heavy learning of Java programming and it has traditionally not attracted
students from underrepresented groups.

Building on the foundation that AP CSP provides, our new course ’CSFrontiers’ seeks to
dramatically expand access to the most interesting and exciting frontiers of computing and the
types of collaboration and 21st century skills (such as data literacy) required to productively
leverage computational methods and tools in virtually every profession. To address the dire
gender disparity in computing, the curriculum is designed to engage female students by focusing
on real world application domains and issues relatable to high school students (and especially
girls) and affording exploration of topics such as social justice, healthcare, and climate change,
and emphasize project-based learning, collaboration and teamwork. The novice-friendly
NetsBlox programming environment accesses publicly available data sources to allow exploration
of these cutting-edge computing ideas. This paper describes our research and development efforts
to develop a new modular, project-based course comprised of four 9-week
modules—“CSFrontiers” (CSF)—that seeks to dramatically expand access to the most interesting
and exciting frontiers of computing and 21st century skills (such as collaboration and data
literacy). The curriculum is designed with the goals of fostering student interest, and in turn, the
development of a diverse workforce with skills in high demand today.

theoretical framing & curriculum pedagogy

Drawing on a theoretical framework centered on project-based learning and expansive framing,
this project places collaboration, creativity and social relevance at the forefront of the curriculum
design, and integrates strategies for successful recruitment of girls. The curriculum also provides
students with female industry professional role-models to foster girls’ self-perception, social
encouragement, and belonging within STEM/ICT careers. Targeted content and role models are
important, but not sufficient [2]. Our curricular activities connect to students lives, cutting-edge
industry practices, and issues local to students’ communities. Students engage in several projects
to demonstrate the applications of their learned skills to real-world problems. Our mechanisms to
measure the impact of the curriculum are aligned with the PBL design philosophy (described
below).

Project-based Learning. The tenets of project-based learning (PBL) align well with our vision for
a curriculum that engages all students and especially girls. PBL provides a meaningful
project-oriented context to engage learners in conceptual ideas through hands-on knowledge
building [3], [4]. PBL approaches draw on learning theory, especially cognitive apprenticeship, in
which learners apply and learn disciplinary ideas and skills to investigate and solve meaningful
problems [5]. Project-based science, for example, has been shown to engage learners in authentic



disciplinary learning as well as practices such as argumentation, explanation, scientific modeling,
and engineering design in science classrooms [6], [7]. We hypothesize that, as in science, rich
problems that situate complex computing ideas and skills can build connections between
students’ knowledge of advanced CS concepts and their understanding of everyday computing
experiences. Our approach to PBL will focus on rigorous treatment of learning goals, while also
supporting pedagogical approaches to make CS learning more meaningful to learners through
authentic projects that can result in heightened motivation and interest [8].

Expansive Framing. Engle [9] proposed the idea of expansive framing. It is a strategy for
engagement and preparation for future learning (PFL) that explicitly fosters an expectation that
students will continue to use what they learn. Framing curricular content as having the potential
for transforming students every- day experiences initiates a series of processes of cognitive
encoding of the learning that eventually lead to greater motivation and transfer. Grover [10]
successfully built on this work [9] to address middle school students’ perceptions of computing
and motivate transfer and preparation for future learning in an introductory CS course [11].

This design philosophy will be supported by the use of the NetsBlox [12]. programming
environment (described below) that also affords features for an easy introduction to the advanced
ideas in computing covered in CSFrontiers [13], [14].

programming tools to support advanced ideas in computing

Most block-based programming environments provide only limited support to access the network.
However, in order to support distributed computation and other modern computing technologies,
it is important to provide flexible access to the internet. To this end, NetsBlox extends Snap! with
two intuitive abstractions that allow students to create truly distributed applications [13],
[14].

The first abstraction, Remote Procedure Calls (RPC) provide access to a set of selected online
data sources and web services. RPCs allow users to invoke functions running remotely on the
NetsBlox server and provide results as return values. Related RPCs are grouped into Services.
Examples are Google Maps, Weather, Earthquakes, the Movie Database, and many others.
Additional services that run directly on the NetsBlox server, and do not require third party
support, include a Gnuplot-based chart service and a hierarchical key-value store called Cloud
Variables. Importantly, RPCs use a single block called “call” which is self documenting. It has
two pull-down menus, one for the service and one for the RPC. When a service is selected, the
second menu reconfigures itself to show the RPCs available within the selected service. When an
RPC is selected, slots for the required input arguments appear along with their names. Context
sensitive help explains what the given RPC does and what the required input arguments are.

To illustrate how easy it is to start with NetsBlox and RPCs, consider the following 7-block
program that display atmospheric carbon dioxide concentrations as measured by the NOAAA on
Mauna Loa (Figure 1). The call to the getCO2Trend RPC of the MaunaLoaCO2Data Service
returns a 2-column matrix: each row is a pair of time and measured CO2 in parts per million
(ppm). This can be directly passed to the draw RPC of the Chart Service that returns an image



with the plot. The optional second argument to the draw RPC is a list of property-value pairs that
modify the appearance of the plot. The returned image can be passed to the switch to costume
block that changes the appearance of the sprite as shown.

(a) (b)

Figure 1: Displaying CO2 concentrations from Hawaii by NOAA. Code (a) and resulting plot (b).

The “call” block is a powerful abstraction. Using a single generic block that configures itself
according to context removes the cognitive load of learning a new set of blocks for every service.
It also eliminates palettes full of new and unfamiliar blocks that would require searching for just
the right one. Furthermore, the call block returns built-in data types (numbers, text, lists,
multi-dimensional arrays or images, etc.). Users do not need to de-serialize the data, parse text, or
a process a JSON data structure to extract useful information from results, unlike with HTTP calls
available in other tools.

The second distributed computing abstraction built into NetsBlox is message passing. Messages
in NetsBlox are very similar to events in Scratch and Snap!. However, unlike events, messages
can carry data and they do not have to stay within the project; they can travel to any other
NetsBlox project running anywhere on the internet at the time of sending. Messages have types,
defined by a name and the data the message is to carry (i.e., an ordered set of input slot names).
Message type definition is done similarly to how one defines a custom block header in
Snap!.

Figure 2: Simple texting app

Only two blocks are needed for message passing: one for sending and one for receiving.
Selecting a message type in the “send” block pull down menu reconfigures it to show the
corresponding input slots with their names provided. Similarly, selecting a message type in the
“when I receive” receiver hat block shows the same fields as variables, just like a custom block



definition does. Figure 2 shows a simple texting app. If two or more users run the same app, they
can send and receive messages to and from each other.

NetsBlox supports both synchronous and asynchronous collaboration. It allows users to issue and
accept invitations to collaborate on a project. Collaborators can then work on the same project
simultaneously. Concurrent editing operations show up on everyone’s screen. The server resolves
conflicting changes by approving the first one, and rejecting subsequent ones. However, since the
typical latency is under 100 milliseconds, this rarely happens. Students can also work
asynchronously. This is similar to how popular collaborative editing tools such as Google Docs
work. However, there is a conceptual difference between static documents and continuously
executing block-based code. The latter has a state: variable values and the appearance of the
sprites and the stage. Since each user’s computer executes the code independently, the program
state would be hard, if not impossible, to synchronize. So NetsBlox only keeps the program itself
in sync across collaborators. The scripts will be the same, but the stage and the variable values
will typically be different across users.

Collaboration support enables pair programming, team projects, remote tutoring, and remote
collaboration. The latter two have been especially important with online learning during the
pandemic.

module descriptions

The CSF curriculum comprises four 9-week modules–Distributed Computing (DC), Internet of
Things (IoT) & Cybersecurity, Artificial Intelligence & Machine Learning, (AI/ML), and
Software Engineering (SE). This section described the first three that have been designed and
piloted. The design of the last module, Software Engineering, is currently in progress.

distributed computing

The first module has multiple objectives. First, it needs to introduce the NetsBlox programming
environment that is the primary tool used across the entire curriculum. At the same time, it serves
as a refresher for the most important programming concepts students learned in previous classes.
Finally, it covers the two distributed computing abstractions NetsBlox brings to the table: RPCs
and message passing. These three objectives are tackled simultaneously through a sequence of
increasing more complex hands-on projects.

The first project is a weather app with a fully interactive map background using the RPCs of the
Google Maps service. Wherever the user clicks, the current weather conditions are displayed. The
project reacquaints students with variables, if-statements and custom blocks (i.e., functions) and
introduces RPCs such as getMap that returns an image with the map of the specified area,
getXFromLongitude that converts longitude to screen coordinates, or getTemperature RPC of the
Weather Service that returns the temperature in Fahrenheit at the desired location. The instruction
is interactive: after the teacher introduces a concept and demonstrates its usage, the students need
to add similar functionally on their own. For example, after demonstrating how to implement
zooming in, students have to work on zooming out by themselves. Similarly, after showing how



to pan East, students have to program panning West, North and South on their own.

The next lesson is on lists using the MovieDB service. The program asks for a movie title and
displays photos of the three leading cast members. This lesson is followed by accessing and
visualizing climate change related data from the NOAA (see Figure 3). The focus in the first part
of the module is on using online services to access STEAM data sources and services to create
engaging projects.

Figure 3: Plotting atmospheric CO2 concentrations for the past 800,000 years

The second half of the module focuses on social and collaborative projects utilizing message
passing. After introducing how to send and receive messages by creating a distributed “Hello
World” example, the first project is an animation of a running dog as it seamlessly jumps from
one computer screen to another. This unit is followed by creating a shared whiteboard as two
students can write on each others’ stages by sending a list of pen coordinates back and forth.
Other lessons include a chatroom where all classmates can post messages for everybody else and
a mesh networking simulation. The final lesson is a simple distributed turn-based multi-player
game such as Tic Tac Toe, 21 pebbles or Ghost. These lessons teach how to create various
message types and design simple communication protocols.

The last week of the module is set aside for an individual or team based project of the students
own choosing. Learners can pick one or more of the many services of NetsBlox to access data
sources or service that were not covered and make a project utilizing it. They can even bring their
own data. NetsBlox has a dedicated service that takes a CSV file and turns it into a user-defined
service automatically. Or students can focus on message passing instead and implement their
favorite distributed game.



internet of things (iot) & cybersecurity

As more and more devices are connected to the internet, IoT has become a pervasive trend in
manufacturing, transportation, energy generation, smart buildings, and homes, among other areas.
The NetsBlox environment supports accessing a number of open source sensors, allowing
students to process and visualize sensor data. To introduce students to IoT, NetsBlox supports
accessing ThingSpeak [15], which is a broad collection of primarily user-owned devices with a
common access protocol. This allows students to search for certain types of devices—for
instance, weather sensors—and download their recent data for processing and visualization in
NetsBlox through tools such as the Chart service, which lets students easily generate and display
graphs of their data.

To bring IoT content closer to students, NetsBlox also supports accessing the sensors and
graphical displays of students’ own smartphones through a mobile app called PhoneIoT [16]. By
using their own hardware, this allows students to physically manipulate the devices they connect
to and see live changes from direct interaction. For instance, one of the first projects involving
PhoneIoT has students use live sensor data to turn their device into an accelerometer-based
controller for manipulating sprites on the NetsBlox stage. That is, by tilting their phone every
which way, they can control how the sprite moves on their computer screen. Another easy
beginner project is a compass app using the phone’s orientation sensor (see Figure 4). It is
important to note that the student’s program runs in the browser on their computer and not on the
phone. The program interacts with the phone using the RPCs of the PhoneIoT Service and
messages the phone sends to the user’s program.

(a) (b)

Figure 4: PhoneIoT code (a) in NetsBlox for a simple compass app on the stage (b).

PhoneIoT provides a simple introduction to two common IoT access paradigms: polling and
streaming. RPC return values are used for polling and message passing for streaming. For
example, the compass app above uses the listenToSensors RPC to request orientation data from
the phone every 100 milliseconds. In turn, the phone starts to send 10 “orientation” messages per
second as shown in the figure.

Later, students are introduced to PhoneIoT’s graphical components, which enables creating
custom widgets on the display using yet another set of RPCs and receiving asynchronous



event-based user interactions via message passing. For example, students use this to implement a
simple fitness tracker app that accesses the location sensor of the device and various RPCs in the
Google Maps Service to plot the user’s location on a map and update the phone’s display with a
mirror of the NetsBlox stage and other information such as the estimated total distance covered.
Again, all the logic is implemented by the student’s program in NetsBlox that in turn, interacts
with the phone.

Thus far, students have been introduced to IoT primarily in terms of sensors, be they “proper”
sensors like an accelerometer or GPS, or sensors representing user interaction. However, IoT also
includes actuators, which allow programs to interact with the physical world. To this end, students
are introduced to RoboScape, a NetsBlox service for writing programs that control wireless
mobile robots [17]. Because the cost of hardware can be a barrier to some schools, NetsBlox also
supports a virtual robotics environment called RoboScape Online [18], which is compatible with
the existing RoboScape service. With RoboScape, students can access their physical or virtual
robot’s onboard sensors to implement manual behaviors like remote control driving with the
keyboard or through PhoneIoT widgets, or autonomous behaviors such as lidar-based collision
prevention. As opposed to many existing educational robotics platforms, RoboScape robots have
a fixed program which accepts text-based commands over the network; this is used to introduce
students to several cybersecurity topics. Initially, all communication between students’ NetsBlox
programs and the wireless robots is unencrypted, allowing students to explore how to eavesdrop
on messages and even how to falsify data and take control of others’ robots. To address this issue,
students are introduced to a few simple encryption techniques supported by the robots (e.g.,
Caesar ciphers), as well as how to potentially crack these ciphers and circumvent other students’
security measures. Later, students are introduced to Denial of Service (DoS) attacks, as well as
rate limiting as a means to counter it. Proceeding in this fashion, students are gradually
introduced to a variety of cybersecurity concepts including secure key exchange, replay attacks,
and others. At several points along the way, students are tasked with designing their own suite of
safeguard measures and programming their robots to manually or automatically complete some
objective while other students attempt to sabotage them with their own suite of attacks.

artificial intelligence & machine learning

Artificial intelligence and machine learning have become increasingly important in daily life, as
more systems are relying on these powerful algorithms and data to make decisions. Guided by the
emergent AI4K12 framework [19], we have developed some new activities and adapted activities
from the AI-4-All curriculum [20] for the AI/ML module. The AI-4-All Open Learning
curriculum evolved from a 2015 summer camp called SAILORS designed in 2015 to meet three
goals: increase interest in AI, contextualize AI through social impact, and address barriers for
girls in CS [21].

In the first AI/ML unit, students use the already-familiar block-based NetsBlox programming
environment to explore data features from several demo Twitter accounts to see how that affects
the presence of Twitter bots in clusters. Once familiar with classification, students build simple
classifiers using real datasets of hundreds of Twitter accounts. In the second unit, students
complete an interactive map activity where they learn the inner workings of breadth first search



and find the shortest paths between major cities in the U.S.. In the third unit, students learn to use
the Genius API of natural language processing techniques for sentiment analysis on two different
forms of media (tweets and song lyrics). In the fourth unit, students take a deeper look at machine
learning techniques. Students work with neural networks and imitation learning concepts to
modify training sets to see how that influences the effectiveness of algorithms used. In the fifth
unit, students make modifications to ML algorithm parameters, and eventually design their own
machine learning apps. As part of each unit, students explore ethics in ML and biases perpetuated
from pre-existing datasets on which algorithms are trained, and discuss how these issues arise in
articles and stories from the news.

This module introduces AI and ML through classifiers, search, and sentiment analysis activities,
and also emphasizes social applications and ethics of AI. In the NetsBlox Twitter activity,
students use information such as number of followers, tweets, and retweets, to develop their own
classification rules. For the Sentiment Analysis activity, students use Python with the Genius API
library to compare the sentiment of song lyrics and song titles and develop hypotheses for trends
based on their results. The topics of AI & Environment and AI & Criminal Justice from the
AI4All Open Learning curriculum [20] help students connect the AI and ML they are learning to
real world applications.

pilot studies: teacher pd & student camps

summer 2020, distributed computing pd

Table 1: CSF:DC PD phases and key activities
Week 1 (Teacher Training) a. Intro to NetsBlox; b. Intro to Distributed Computing; c.

Coding & training on RPCs and message passing broken down
into a series of projects; d. Key pedagogies for CS teaching

Week 2 (Student Camp) Teachers in groups of 2 or 3 work with students on a 1-week
“camp” involving RPCs and message passing projects

Week 3 (Co-Design) Teachers work in 2 groups to create/co-design 7 lesson plans for
the CSF:DC Module

5 Female and 2 male high school CS teachers from North Carolina(4), Tennessee (2), and
Massachusetts (1) were invited to participate in the Summer program. The teachers represented a
diverse racial mix– the 5 female teachers were African-American (2), White(2), and
Indian-American (1), and both male teachers were White. The 3-week summer PD was designed
in 3 key phases each mapping to one week (see Table 1). For week 1, which was the most intense
time of teacher training alongside the researchers, we planned (a) An introduction to the broader
CSF project and research; (b) An introduction to Distributed Computing (CSF:DC) and its key
concepts; (c) A curricular sequence of NetsBlox projects to bring RPCs and message passing to
life; (d) Sessions on pedagogy (growth mindset, pair programming, PBL, real-world connections,
culturally relevant pedagogy, student identity and intersectionality).

Each day of PD ended with teachers using the last half an hour to reflect, debrief, and respond to
these survey questions: What went well today? What could be improved as we move forward?



What was one success you had today? Is there anything else you’d like to share?. At the end of
the 3 weeks, we administered a summative feedback survey with mostly Likert scale items to get
feedback on various elements of the overall PD and learning experience. In addition, we also
asked teachers how likely they are to use the learning of CSF:DC with NetsBlox in their classes in
the coming year and how they planned to use the materials. We also asked teachers a few
open-ended questions about what they liked or what could be improved for the future.

teacher feedback

Based on the student projects in the summer camp in week 2 and co-designed lesson plans in
week 3, we believe the summer program was a resounding success. Not only did the teachers
learn from the experience as evidenced by both outcomes, they brought their teaching experience
to make key value-additions to the lesson plans in terms of identifying a need to articulate prior
knowledge and the spiral curriculum nature of the DC projects. Furthermore, they also
incorporated ideas to round out the units with non-programming activities such as student
research projects on understanding networking more generally. Such activities tied well to the
pedagogical aspects of a project-based curriculum that connected ideas to the real world.

Table 2: Mean scores in summative survey (out of 5)
Field Mean (SD)
I can use this training to positively impact the achievement of my students. 4.67 (0.47)
The content of the professional development is relevant to my professional
responsibilities.

4.33 (0.75)

The facilitators helped me understand how to implement my learning. 4.67 (0.47)
This professional development will extend my knowledge, skills, and per-
formances.

4.67 (0.47)

This professional development was tailored to meet my needs as a learner. 4.83 (0.37)
The agenda and plan were appropriate for the activities. 4.83 (0.37)
The agenda and plan were conducive to learning. 4.83 (0.37)
New practices were modeled and thoroughly explained. 4.67 (0.47)
Sufficient time was provided for guided practice and tasks. 4.50 (0.5)
The facilitators were knowledgeable and helpful. 5.0 (0.0)
The facilitators were well prepared. 5.0 (0.0)
The instructional techniques used facilitated my learning. 4.67 (0.47)
The materials used were accessible and enhanced my learning. 4.67 (0.47)
The PD activities were carefully planned and well organized. 4.83 (0.37)
The PD goals and objectives were clearly specified. 4.67 (0.47)
The PD included a variety of learning activities relevant to the topic. 4.67 (0.47)
Time was used efficiently and effectively. 4.67 (0.47)

Teacher feedback on the summer experience was overwhelmingly positive. The following are
mean scores on aspects of PD from the summative survey.



summer 2021, teacher pd & student camp

In summer 2021, six of the seven 2020 teachers and two experienced high school CS teachers
were recruited to participate in PD. The PD lasted 5 days, with 4 hours planned for synchronous
work, and the expectation that teachers would spend the remaining 4 hours of each day planning
as needed. We started with a 1.5 day introduction to refresh NetsBlox, programming, and
problem based learning pedagogies. On the second day, the 8 teachers were divided into 4 pairs,
two pairs that would learn and teach AI/ML, and two pairs that would learn and teach IoT. We
then provided two parallel 3.5-day professional development workshops for the separate AI/ML
and IoT groups. For each topic, we provided teachers with student-facing materials and brief
teacher guides. Teachers worked through the curricula in pairs, and instead of always working
each activity together synchronously as in summer 2020, we instead provided videos of solutions
for each activity each day, so that teachers could use their asynchronous time to work on each
activity at their own pace.

For the two weeks following the teacher PD, teachers worked in pairs to facilitate a summer camp
on the topic they’d just learned. The AI/ML and IoT summer camps were facilitated through NC
State University’s Engineering Place, and held from 9am-12pm Eastern online each day. Over the
course of 10 days, students explored each of the two modules in 30 hours, culminating in final
presentations of a topic of their choice on the last day. Each afternoon after a 1-hour break,
teachers met with the project PIs for 45 minutes to debrief by discussing how the camp went,
reading student feedback, asking questions, and planning for the next day as needed.

teacher feedback

Each day after each camp session, we debriefed with the teachers to get their perspectives on
trying out the materials with participants. In all cases, the facilitators reported a positive view of
the curriculum and disclosed that participants were engaged in the activities. Conversations with
the PD facilitators expressed some types of activities were more successful than others.
Successful activities included the NetsBlox activities, the AI4ALL AI Bytes units, and the final
project presentations. Teachers stated that the NetsBlox activities (Twitter Bot Classification and
Sentiment Analysis) allowed participants to focus on the AI concepts being discussed without
participants being concerned with optimal coding concepts. As the participants began the Python
activities, a facilitator commented “Students seemed to enjoy working in Python. My students
even said that it was fun.” We also received positive comments about the AI4ALL AI Bytes
presentations and the topics discussed. One teacher said, “[I] really really appreciated the
absolutely excellent slide shows!”, and another said, “Campers had some good insights about
some of the issues with facial recognition AI, as well as some of the potential beneficial uses”.
This statement also expresses that participants were not only learning about the subject of AI and
ML, but engaging in the subject matter. Finally, the culmination of the camps was the
paired/group final projects and presentations. The day before the final presentation showcase
(where parents were able to attend with their children to view the final project demos) a facilitator
remarked “All groups made excellent progress on their projects today. More than half the groups
were able to finish and think about extensions to their projects. The other groups are confident
that they’ll be able to finish in time tomorrow.” Despite the differences in programming



backgrounds, all participants completed a final project and presented a slide presentation on them
with a demo of their Python code.

student feedback

To gain perspectives from our female participants, we look at open-ended questions from the
post-survey on participants’ experience in the camp and their interest in a career in computer
science. The female participant data showed the overall response to the question “What other
feedback, comments, or suggestions do you have after your experience with the [CSF] Camp?”
was very positive. One female participant commented on recommending the program, “I learned
a lot and would recommend it to others.” Others included, “I like how they were trying to make
the students very energetic and more involving with the lesson” and “I had fun at this camp.” Four
female participants commented on the impact of the facilitators on their experience which is
another factor for female participant engagement [22]. Additional feedback illustrates how
facilitation is a valuable aspect of curriculum development and the importance of the facilitators’
impact on the participants. A female participant commented, “I really enjoyed the camp and the
support my teachers provided”, “The information was very thorough and I really liked the step by
step coding instructions. The Genius API activity was also something I’ve never seen before (in a
good way).”, “I liked how knowledgeable all the counselors were and the amount of effort that
was put into the presentations and activity planning was evident”.

Our results indicated that while the participants were challenged, they were not discouraged by
the difficulty or the new concepts they were learning as represented in the following comment “I
really enjoyed this camp! A few of the assignments towards the end of the week were confusing
but once we worked through them it felt good that we could understand it.”

In the final part of the survey, respondents were asked “Do you think you could be a computer
scientist?” 6 female participants answered yes and 4 answered maybe (due to being interested in
other STEM areas, which was specified in the survey). The results of this question, coupled with
Likert scale survey questions indicate that the participants left more confident in knowing what
being a computer scientist is like and whether they could visualize themselves as one. This was
likely impacted by the balance of teacher leaders, invited speakers, and graduate student camp
facilitators being largely female, providing them with many female role models.

next steps & conclusion

In the future we will be developing, piloting, and implementing our 4th and final module on
Software Engineering and Games. This module carries 3 main themes across its learning activities
including software engineering processes (prototyping, testing, teamwork), human computer
interaction (HCI) (usability), and ethics (accessibility, security, etc). To situate this this lesson in a
meaningful and engaging context, we explore both casual, collaborative games as well as serious
games, or games with a purpose. These lessons will build on each other and students will end the
module with a final capstone project that incorporates many of the learning objectives they’ve
experienced earlier in the course. This unit also capitalizes on videos and guest speakers to bring
in female role models from industry to highlight their innovative and collaborative work in the



field. We will train the CS Frontiers teachers on these materials in summer 2022, before they pilot
in virtual summer camps prior to implementing the units in their academic courses.

acknowledgements

This material is based upon work supported by the National Science Foundation under Grants
1949472, 1949492 and 1949488. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] S. Grover and R. Pea, “Computational thinking: A competency whose time has come,” Computer Science
Education: Perspectives on teaching and learning in school. London: Bloomsbury Academic, pp. 19–37, 2018.

[2] J. P. Cohoon, J. M. Cohoon, and L. G. Cintron, “Teaching teachers to teach diverse students in computer
science,” in 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 2016, pp. 1–2.

[3] R. A. Duschl, H. A. Schweingruber, and A. W. Shouse, Taking science to school: Learning and teaching
science in grades K-8. Washington, DC: National Academies Press, 2007, vol. 49.

[4] R. Lehrer and L. Schauble, Cultivating model-based reasoning in science education. Cambridge University
Press, 2006.

[5] A. Collins, J. S. Brown, S. Newman, and L. Resnick, Knowing, learning, and instruction: Essays in honor of
Robert Glaser. Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics.
Psychology Press, 1989.

[6] J. L. Kolodner, P. J. Camp, D. Crismond, B. Fasse, J. Gray, J. Holbrook, S. Puntambekar, and M. Ryan,
“Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning
by design (tm) into practice,” The journal of the learning sciences, vol. 12, no. 4, pp. 495–547, 2003.

[7] K. L. McNeill, D. J. Lizotte, J. Krajcik, and R. W. Marx, “Supporting students’ construction of scientific
explanations by fading scaffolds in instructional materials,” The journal of the Learning Sciences, vol. 15, no. 2,
pp. 153–191, 2006.

[8] D. A. Fields, Y. Kafai, T. Nakajima, J. Goode, and J. Margolis, “Putting making into high school computer
science classrooms: Promoting equity in teaching and learning with electronic textiles in exploring computer
science,” Equity & Excellence in Education, vol. 51, no. 1, pp. 21–35, 2018.

[9] R. A. Engle, D. P. Lam, X. S. Meyer, and S. E. Nix, “How does expansive framing promote transfer? several
proposed explanations and a research agenda for investigating them,” Educational Psychologist, vol. 47, no. 3,
pp. 215–231, 2012.

[10] S. Grover, S. Cooper, and R. Pea, “Assessing computational learning in K-12,” in Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM, 2014, pp. 57–62.

[11] S. Grover, “Teaching and assessing for transfer from block-to-text programming in middle school computer
science,” in Transfer of Learning. Springer, 2021, pp. 251–276.

[12] “NetsBlox website,” https://netsblox.org, 2021, cited 2021 December 1.

[13] B. Broll, Á. Lédeczi, P. Volgyesi, J. Sallai, M. Maroti, A. Carrillo, S. L. Weeden-Wright, C. Vanags, J. D.
Swartz, and M. Lu, “A visual programming environment for learning distributed programming,” in Proceedings
of the 2017 ACM SIGCSE technical symposium on computer science education, 2017, pp. 81–86.



[14] B. Broll, Á. Lédeczi, G. Stein, D. Jean, C. Brady, S. Grover, V. Catete, and T. Barnes, “Removing the walls
around visual educational programming environments,” in 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE Computer Society, 2021, pp. 1–9.

[15] M. A. G. Maureira, D. Oldenhof, and L. Teernstra, “Thingspeak–an api and web service for the internet of
things,” World Wide Web, 2011.

[16] D. Jean, B. Broll, G. Stein, and Á. Lédeczi, “Your phone as a sensor: Making iot accessible for novice
programmers,” in 2021 IEEE Frontiers in Education Conference (FIE). IEEE, 2021, pp. 1–5.

[17] Á. Lédeczi, M. Maróti, H. Zare, B. Yett, N. Hutchins, B. Broll, P. Völgyesi, M. B. Smith, T. Darrah,
M. Metelko et al., “Teaching cybersecurity with networked robots,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 2019, pp. 885–891.

[18] G. Stein and Á. Lédeczi, “Enabling collaborative distance robotics education for novice programmers,” in 2021
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 2021, pp. 1–5.

[19] D. Touretzky, C. Gardner-McCune, F. Martin, and D. Seehorn, “Envisioning ai for k-12: What should every
child know about ai?” Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, pp.
9795–9799, 2019.

[20] “AI-4-All website,” https://ai-4-all.org/, 2022, cited 2022 February 7.

[21] M. E. Vachovsky, G. Wu, S. Chaturapruek, O. Russakovsky, R. Sommer, and L. Fei-Fei, “Toward more gender
diversity in cs through an artificial intelligence summer program for high school girls,” in Proceedings of the
47th ACM Technical Symposium on Computing Science Education, 2016, pp. 303–308.

[22] A. Fisher and J. Margolis, “Unlocking the clubhouse: the carnegie mellon experience,” ACM SIGCSE Bulletin,
vol. 34, no. 2, pp. 79–83, 2002.


