
Enabling Collaborative Distance Robotics Education
for Novice Programmers

Gordon Stein
Institute for Software Integrated Studies

Vanderbilt University
Nashville, Tennessee 37212–2328

Email: gordon.stein@vanderbilt.edu

Ákos Lédeczi
Institute for Software Integrated Studies

Vanderbilt University
Nashville, Tennessee 37212–2328

Email: akos.ledeczi@vanderbilt.edu

Abstract—Distance education has gained significance recently.
However, its application to robotics education presents challenges
as physical access to hardware is typically required. While
educational robotics simulation platforms exist, most are limited
in scope or do not facilitate remote collaboration well. This paper
proposes a novel networked robotics simulator for education,
where students are able to collaborate in a shared 3D virtual
space their robots inhabit. The framework combines these
simulated worlds with a block-based programming environment
to enable distance robotics education for a wider audience. The
users’ programs run in a web browser on their computers and
they issue commands to the virtual robots through a network
protocol abstracted to simple-to-use blocks. Robots send back
acknowledgements and sensor values through the same protocol.
Interactive environments provide students with a more immersive
educational experience, and allow for automatically evaluating
student performance. In addition to sharing the virtual worlds
remotely, students can also develop their programs together
since the block-based environment supports both synchronous
and asynchronous remote collaboration. The paper presents two
scenarios showing a robotics challenge and an extension of the
concept to a smart city scenario controlling traffic lights. Reduced
barriers to entry for both robotics education and curriculum
creation will allow for a more diverse set of students and course
materials.

I. INTRODUCTION

While the COVID-19 pandemic created a more urgent
need for students to engage in learning experiences without
needing to physically enter classrooms, a demand for distance
education in all fields has been present for decades [1].
While distance learning has provided many challenges in how
students and educators both adapt to it, digital transformation
of instructional activities can also provide new opportunities
for richer educational experiences and provide flexibility to
students who would otherwise be unable to enter the class-
room.

Educational robotics has been demonstrated to enhance stu-
dent interest and engagement, while encouraging underrepre-
sented groups’ participation in STEM [2]. However, classroom
use of educational robotics requires the physical presence
of robots and students and presents educators with several
barriers to entry. The first, most obvious, cost is the inherent
expense in purchasing the robots. Robots will also require
maintenance to remain in use, and educators may need to be

trained to repair the robots if damage occurs in the classroom.
Challenges given to students may also include costs associated
with setting them up or cleaning up afterwards. By using a
simulation of robots, these costs can be greatly reduced. At
the same time, physical robots in a classroom are limited in the
range of scenarios presentable by them. Some robot designs,
such as UAVs, may be difficult to utilize safely in schools, but
a simulated robot ensures the students’ safety.

A reduction in cost creates a more equitable setting for both
students and educators, who may otherwise find themselves
excluded from existing educational robotics platforms. In
addition, by allowing for a wider range of curricula, including
educational content created by instructors to personalize the
content for their class, a more diverse group of student interests
can be met.

A. Existing Work

Educational robotics has been present in K-12 classrooms
for decades, with a variety of platforms being popular in
education [3] [2]. Educational robotics simulators have also
seen common use in classrooms [4] [5]. However, simulation
for robotics education often has a different focus than this
work. For example, Gazebo [6] provides excellent physics and
sensor simulation, and provides some support for networking,
but requires experience with Linux to set up, creating a
significant barrier to entry for K-12 educators. A goal of this
work, RoboScape Online, is to make it easy for educators to
begin using virtual robots in their classrooms without requiring
teachers be familiar with any technology outside of the familiar
block-based programming interface used, NetsBlox, and a
web browser. One notable educational robotics platform is
Robotify [7], which also features block-based programming
and multi-user collaboration. RoboScape Online will provide
a free service with open source software designed to be
extended with new content by educators, and even by students,
compared to Robotify’s proprietary for-profit service.

A solution to students being required to be physically
present in a classroom is to implement “Robots as a Service”,
exposing robots as web services [8], similar to our original
RoboScape service we are extending to virtual robots in
this work, to enable remote-control over a greater distance.

978-1-6654-4592-4/21/$31.00 ©2021 IEEE

Although the system described by Wang et al. has the ability
to connect to a Unity-based simulation, it is not focused on
driving student collaboration through the tool or expanding it
beyond college-level EE courses.

A similar approach to providing remote access to small
robots for education is Georgia Tech’s “Robotarium” [9]. How-
ever, in the Robotarium, students upload code to be verified
in simulation first, with a focus on providing safe multi-
user sharing of a physical testbed. RoboScape Online instead
targets real-time simulation of robots in virtual testbeds—a
large number of which can coexist simultaneously—allowing
for greater scalability without significant costs, and reducing
any need to ensure user code will not damage the robots, as
simulated robots can be replaced with the click of a button.

Our previous approach, using physical robots with the
RoboScape platform, was developed for summer programs
run at our university [10]. These programs saw students learn
cybersecurity using physical educational robots as a tool to
make the topic more engaging. This work expands on this
system both by moving the robots into simulated, networked
environments, but also by providing the capability to use the
same concepts to teach new domains.

II. NETSBLOX

Programming functionality is provided through Nets-
Blox [11], an extension of the Snap! [12] environment with
the primary goal of introducing distributed computing features
[13]. This allows for students of all skill levels to be provided
with block-based abstractions for a focus on computational
thinking rather than syntax. While Snap! already includes ad-
vanced features such as custom block creation and functional
programming capabilities, NetsBlox expands upon it with
a focus on distributed computing features provided through
block-based abstractions.

The first way NetsBlox introduces students to distributed
computing is through the ability to pass messages between
NetsBlox programs. While projects run entirely on the stu-
dents’ browsers, the server infrastructure for NetsBlox pro-
vides addressing for user sessions and projects so that any
two running NetsBlox programs can communicate. Students
define message types with named fields so that the data sent
arrive as variables in the “when I receive msg” hat block. In
addition, students are able to share a programming session
in real time over the Internet, similar to services such as
Replit [14], allowing for collaboratively coded projects.

Fig. 1. Example code accessing web service data through an RPC in NetsBlox

NetsBlox also provides students with a rich set of web
services for integration into their projects in the form of
Remote Procedure Calls (RPC). RPCs are accessed through
a “call” block (if we need the return value) or a “run” block
(if we do not). Related RPCs are grouped into services. For
example, a student making a weather app can connect to an
online weather API through the NetsBlox server by using a

“call” block to call the remote “temperature” procedure on
the “Weather” service, as seen in Figure 1. Services are also
provided for features such as cloud storage, location services
with maps, access to scientific datasets on topics such as
climate change, the COVID-19 pandemic, a movie database
and language translation.

A. RoboScape

Robotics support for NetsBlox is provided as a service
named RoboScape. [10] This service provides RPCs for giving
commands to robots and for receiving sensor values from
them. This service was developed for physical robots and it
currently supports the Parallax ActivityBot 360 robots.

While typical educational robotics platforms focus on stu-
dents developing firmware to run on the robot [3], RoboScape
continues our goal of making distributed computing concepts
more approachable by having students’ code instead send
commands over the network. For example, Figure 2 shows
a simple program that instructs the robot repeatedly to move
forward at about half its top speed for one second and then
turn in place by setting the speed of the left and right wheels.

Fig. 2. Example NetsBlox code sending commands to a RoboScape robot

The network is intentionally designed to allow other stu-
dents to eavesdrop, intercept, and spoof messages to facilitate
a cybersecurity curriculum. Students are able to chose an en-
cryption algorithm and set encryption keys for their commands
and messages, enable sequence numbers to prevent replay
attacks, and more, during a series of challenges where other
students are allowed to attempt to disrupt others’ robots’ op-
eration. Previous educational programs run using RoboScape
[10] have demonstrated that this design choice led to fun and
engaging cybersecurity education.

III. ROBOSCAPE ONLINE

RoboScape Online reimagines the approach for cyberspace.
It seeks to provide a more accessible platform for distance
computer science education using robotics. Students are pro-
vided a shared virtual space to use virtual robots in. At the
same time, teachers can utilize tools to help manage the class
while they participate in the simulated robotics activities.

The client and server software for RoboScape Online are
created in the Unity game engine [15]. A game engine
was chosen for development for multiple reasons. Unity is
designed to run on multiple operating systems and computer
architectures, making it straightforward to provide executable
files for Windows, macOS, Linux, and mobile platforms from
a single codebase. There is a large ecosystem of both plugins
and developer support for Unity, allowing easier integration of

features such as robust networking support. In addition, game
engines have the express purpose of running in real-time with
an attractive level of graphical fidelity on common consumer-
grade hardware.

The use of the Unity game engine also allows for easier
content distribution through Unity’s AssetBundles. RoboScape
Online uses this feature to download remotely hosted scenario
files, so a wide array of environments can be made available
online without a large upfront download. AssetBundles only
allow for models, textures, sounds, and similar assets to be
included, rather than custom scripts. Scripts in the client
program can be referenced by a scene in an AssetBundle,
so a rich library of scripts has been provided to facilitate
interactivity in custom environments. While this required
additional development time, it comes with the benefit that
user-generated content can be trusted more. New content is
created through Unity’s editor. The amount of support and
documentation available online for this editor is significant
enough that even students will be able to make impressive
scenes.

Fig. 3. Architecture of internet connected components

To enable networked robotics simulations, RoboScape On-
line is distributed across multiple components (See Figure 3).
First, there is the main NetsBlox server, which in addition
to hosting the programming interface, stores user information
for authentication purposes. The second component is the
RoboScape Online server the Unity clients and servers connect
to. The web interface for teachers to use is designed as an
expansion of an existing dashboard provided with NetsBlox.
Unity servers running on cloud instances announce themselves
and their capacity to the RoboScape Online server. This allows
for a flexibility, where new servers can easily be added to
the system automatically based on demand. The RoboScape
Online server will automatically connect students and servers
as needed.

Robots in RoboScape Online default to a model of the Paral-
lax ActivityBot configuration previously used with RoboScape
in physical classrooms, but this represents only a basic level
of functionality. This robot has two drive motors, front facing

“whisker” bumper sensors, an ultrasonic distance sensor, a
button, and two LEDs. Simulated robots may be provided with
sensors and actuators beyond this, and beyond what would be
feasible given the limits of classroom use. GPS, Lidar, inertial
measurement units, environmental sensors, and much more
can be added to robots based on the needs of the scenario.
Simulated sensors will be able to have parameters tweaked
to a desired range, or to introduce effects such as bias or
noise for added challenge or realism. In addition, it will be
possible for a scenario to dynamically change the capabilities
of a robot at run-time, both to simulate different conditions
and to enforce restrictions for a competition mode. These
features make RoboScape Online a truly “low threshold, high
ceiling” environment. In addition, the abstractions provided
through blocks make student code easily reusable between
virtual and physical robots with the same capabilities, thus
students working with physical robots may ”take home” a
virtual robot for homework.

RoboScape Online’s web interface will allow teachers to
manage their students and control how they interact with the
platform. Educators are given the ability to create accounts for
students and assign them to groups. When a class is in session,
the instructor has access to a dashboard with information on
the status of each student. Teachers are given a list of available
scenarios to assign to their students, which will automatically
connect their class to an appropriate cloud instance running the
server program. These scenarios are available as curricula to
provide instructors with relevant course materials to distribute
to their students, and each curriculum presents multiple options
for some scenarios. Robots are automatically assigned an
access control profile such that only the relevant students
have the ability to interact with them. This access control
both controls the ability to send commands to the robot
and allows for different groups of students to be able to
interact with certain components of a robot. For example,
the cybersecurity focused curriculum previously used with
physical robots relied on pushing the robot’s button to trigger
generation of a hardware encryption key, displayed using its
LEDs. In a physical classroom, this did not pose any issue,
but in a virtual one, it is important that students are restricted
from seeing their classmate’ keys or pressing the buttons on
robots not assigned to their group.

A. Example Virtual Environments

The environment seen in Figure 4 is the “box pushing”
scenario. Here the students’ robots are placed on a platform.
Boxes drop from a conveyor belt near the platform, and
students are assigned to use the robots to push the boxes off
of the platform. While this is a simple task, this scenario
demonstrates the multiple ways RoboScape Online can be
used. This task is made available as a competitive scenario,
where students are given different regions of the ground to
push boxes towards, a collaborative scenario, where students
work together to remove all boxes, and an individual scenario,
where students work alone. Teachers also have the choice for
their class to assign this as an autonomous task where the

Fig. 4. View of “box pushing” scenario

students’ programs must operate based solely on robot sensors,
or a manual driving task where students only write a remote
control program in NetsBlox that use the arrow keys to issue
commands, for example. Scenarios such as this could also be
combined with the cybersecurity elements of RoboScape to
provide additional challenges for students.

Figure 5 shows the “traffic signal” scenario. This environ-
ment demonstrates the platform’s ability to extend beyond
simulating robots by tasking the students to operate the lights
on an internet-connected traffic signal. The signals and a row
of vehicle proximity sensors are exposed to the students as web
services in NetsBlox. The traffic is generated automatically
by the environment. Performance is evaluated by the rate of
vehicles passing through the intersection.

Fig. 5. View of “traffic signal” scenario

IV. EVALUATION

To evaluate the usefulness of RoboScape Online, a new
summer program, similar to the previous ones performed at our
university, was conducted this summer. This virtual program
allowed student and teacher feedback to be collected. A virtual
version of the previous RoboScape curriculum was utilized in
the virtual environment with teachers trained to use the system
then running a class with it. Most events were performed in a
specialized scenario environment, but for some only an empty
space with robots was provided. Students worked in groups of
two to three, and were required to have completed AP CSP to
have some familiarity with programming.

Teachers who participated in the program stated that “Stu-
dents were engaged and seemed to be having a good time.”
They did not find the virtual robots to be difficult to work
with, and remarked that any technical issues were quickly me-
diated. Feedback from students included that they enjoyed the
collaboration features and the novice-friendly programming
environment. Students were able to successfully complete the
challenges given to them and generally responded positively.

However, some students with previous robotics experience said
they preferred working with physical robots.

V. CONCLUSION

The ongoing demand for expanded distance education can
be assisted by a new robotics simulation platform. Robotics
education in the classroom provides students with increased
engagement, but also presents teachers with multiple costs.
Simulating robots eliminates many of these costs while also
facilitating distance education. To further remove barriers to
entry, RoboScape Online utilizes a block-based programming
language with strong distributed computing features. Nets-
Blox’s ability to support student collaboration, augmented by
RoboScape Online’s networked virtual spaces, allows students
to easily work together, and to complete robotics challenges no
matter their level of programming expertise or their location.
The web interface to RoboScape Online allows teachers to set
up their classroom without requiring experience with the more
technical aspects of its infrastructure. Instructors are given
the option to tweak the scenarios for the curriculum given
to them, while also having the potential to create their own
novel environments for students to learn in.

The ability to use and create diverse environments will allow
this platform to expand beyond simple robot programming
tasks. Robotics education has previously been applied to
STEM domains such as math [16] [17] and cybersecurity [10],
but with freedom to create environments, the platform could
be used for simulations of ecology, history, or cultural studies
as well. Providing teachers with the tools they need to both
create new environments, host shared spaces for their students,
and interact with them through a novice-friendly programming
interface should create many new opportunities for audiences
and ideas which were previously underrepresented in cyber-
physical systems education.

A. Future Work

By providing an open platform for virtual robotics, Ro-
boScape Online will assist other researchers to conduct studies
on simulated robotics education. To continue in this direc-
tion, additional research tools must be added. The software
currently has limited logging support for student commands
and robot positions, but this can be extended with additional
analytics features.

A set of VR tools is under development to create a “virtual
makerspace.” This would expand the concept to also support
the creation of novel robot designs by the students themselves,
adding potential for richer engineering challenges. It is possi-
ble that the increased immersion provided by a head-mounted
display will provide an experience more engaging to students
with existing robotics experience.

With the feature set of the Unity engine allowing for au-
dio/video content to be included in scenario files, the potential
exists to implement entirely virtual lessons where instruction
is included in the environment itself. Students could be given
more freedom to select topics and lessons could provide smart
assistance similar to what iSnap [18] does for Snap!.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1835874, the National
Security Agency (H98230-18-D-0010) and the Computational
Thinking and Learning Initiative of Vanderbilt University.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] O. B. Adedoyin and E. Soykan, “Covid-19 pandemic and online learn-
ing: the challenges and opportunities,” Interactive Learning Environ-
ments, pp. 1–13, 2020.

[2] S. Anwar, N. A. Bascou, M. Menekse, and A. Kardgar, “A Systematic
Review of Studies on Educational Robotics,” Journal of Pre-College
Engineering Education Research (J-PEER), vol. 9, no. 2, 2019.

[3] L. Xia and B. Zhong, “A systematic review on teaching and learning
robotics content knowledge in k-12,” Computers & Education, vol. 127,
p. 267–282, 2018.

[4] S. Tselegkaridis and T. Sapounidis, “Simulators in Educational Robotics:
A Review,” Education Sciences, vol. 11, no. 1, p. 11, 2021.

[5] E. B. Witherspoon, R. M. Higashi, C. D. Schunn, E. C. Baehr, and
R. Shoop, “Developing Computational Thinking through a Virtual
Robotics Programming Curriculum,” ACM Transactions on Computing
Education (TOCE), vol. 18, no. 1, p. 4, 2017.

[6] O. S. R. Foundation, “Gazebo website,” 2021. [Online]. Available:
http://gazebosim.org/

[7] “Robotify website,” https://robotify.com, 2021, cited 2021 March 8.

[8] Y. Wang, Y. Chen, X. Tong, Y. Lee, and J. Yang, “Robot as a service in
information science & electronic engineering education,” 2017 IEEE
13th International Symposium on Autonomous Decentralized System
(ISADS), p. 223–228, 2017.

[9] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron,
and M. Egerstedt, “The Robotarium: A Remotely Accessible Swarm
Robotics Research Testbed,” 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1699–1706, 2017.

[10] A. Lédeczi, M. Maroti et al., “Teaching cybersecurity with networked
robots,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, Feb 2019, p. 885–891. [Online].
Available: 10.1145/3287324.3287450

[11] “Netsblox website,” https://netsblox.org, 2021, cited 2021 March 8.
[12] “Snap! website,” https://snap.berkeley.edu/, 2021, cited 2021 March 8.
[13] B. Broll, M. Lu, A. Ledeczi, and et al., “A visual programming

environment for learning distributed programming,” in Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. ACM, Mar 2017, pp. 81–86. [Online]. Available:
10.1145/3017680.3017741

[14] “Replit website,” https://replit.com, 2021, cited 2021 March 8.
[15] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,

Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A General Platform
for Intelligent Agents,” arXiv, 2018.

[16] B. Zhong and L. Xia, “A Systematic Review on Exploring the Potential
of Educational Robotics in Mathematics Education,” International Jour-
nal of Science and Mathematics Education, vol. 18, no. 1, pp. 79–101,
2020.

[17] C. Chung and E. Santos, “Robofest Carnival — STEM Learning
Through Robotics with Parents,” 2018 IEEE Integrated STEM Education
Conference (ISEC), pp. 8–13, 2018.

[18] T. W. Price, Y. Dong, and D. Lipovac, “iSnap: Towards Intelligent
Tutoring in Novice Programming Environments,” in Proceedings of
the 49th ACM Technical Symposium on Computer Science Education,
SIGCSE ’18, ser. Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, 3 2017, pp. 1113–1113.

