
Journal of Computer Languages 73 (2022) 101156

B
c
C
T
a

b

c

A

K
B
N
D
M
R

1

m
i
t
y
o
o
c
s
t

m
e
t
t

h
R
A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

lock-based abstractions and expansive services to make advanced
omputing concepts accessible to novices
orey Brady a, Brian Broll a, Gordon Stein a, Devin Jean a, Shuchi Grover b, Veronica Cateté c,
iffany Barnes c, Ákos Lédeczi a,∗

Vanderbilt University, Nashville, TN, United States of America
Looking Glass Ventures, Palo Alto, CA, United States of America
North Carolina State University, Raleigh, NC, United States of America

R T I C L E I N F O

eywords:
lock based programming
etsBlox
istributed computing
essage passing
emote procedure calls

A B S T R A C T

Many block-based programming environments have proven to be effective at engaging novices in learning
programming. However, most offer only restricted access to the outside world, limiting learners to commands
and computing resources built in to the environment. Some allow learners to drag and drop files, connect to
sensors and robots locally or issue HTTP requests. But in a world where most of the applications in our daily
lives are distributed (i.e., their functionality depends on communicating with other computers or accessing
resources and data on the internet), the limited support for beginners to envision and create such distributed
programs is a lost opportunity. We argue that it is feasible to create environments with simple yet powerful
abstractions that open up distributed computing and other widely-used but advanced computing concepts
including networking, the Internet of Things, and cybersecurity to novices. The paper presents the architecture
of and design decisions behind NetsBlox, a programming environment that supports these ideas. We show how
NetsBlox expands opportunities for learning considerably: NetsBlox projects can access a wealth of online data
and web services, and they can communicate with other projects. Moreover, the tool infrastructure enables
young learners to collaborate with each other during program construction, whether they share their physical
location or study remotely. Importantly, providing access to the wider world will also help counter widespread
student perceptions that block-based environments are mere toys, and show that they are capable of creating
compelling applications. In this way, NetsBlox offers an illuminating example of how tools can be designed to
democratize access to powerful ideas in computing.
. Introduction

There are many block-based educational programming environ-
ents designed to make programming accessible to novices. With

nspiration from Logo [1], block-based environments have been popular
ools for introducing programming and computational thinking (CT) to
oung learners. Moreover, research has shown that important aspects
f this enthusiasm are well grounded, in the empirical effectiveness
f block-based environments to support learners in comprehending
ode [2]; exploring and conceptualizing what is possible [3]; building
elf-confidence [2,4–6]; and developing algorithmic and computational
hinking [7,8].

As the strengths of blocks as a representational infrastructure and
edium for learning gain an empirical basis, additional questions

merge about how this innovation might enable a restructuration [9] of
he conceptual domains that students engage with in their introduction
o programming, computational thinking, and computer science. We

∗ Corresponding author.
E-mail address: akos.ledeczi@vanderbilt.edu (Á. Lédeczi).

propose that distributed computing is a promising domain, containing a
family of powerful ideas [10] that can be made conceptually accessible
through block-based representations. We argue that this shift would
not only be educationally meaningful, but that it also could offer an
increase in the power and social relevance of student projects, which
could counteract impressions that students (and teachers) can har-
bor about block-based programming as inauthentic [11] or otherwise
limited [12].

However, a key design limitation of many block-based learning
environments impedes the field’s ability to explore these conjectures.
Specifically, many environments for learning programming keep stu-
dents and their projects confined within the tool. This paper argues that
removing these walls can be highly beneficial—both to be able to teach
more advanced concepts and to broaden participation in computing
among young learners.

In this article, we propose and illustrate a design for a block-
based environment that highlights and leverages analogies between
ttps://doi.org/10.1016/j.cola.2022.101156
eceived 21 March 2022; Received in revised form 18 July 2022; Accepted 12 Sep
vailable online 20 September 2022
590-1184/© 2022 Elsevier Ltd. All rights reserved.
tember 2022

https://doi.org/10.1016/j.cola.2022.101156
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2022.101156&domain=pdf
mailto:akos.ledeczi@vanderbilt.edu
https://doi.org/10.1016/j.cola.2022.101156


C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
fundamental ideas of distributed computing on one hand (including
Remote Procedure Calls and messaging) and sociable human commu-
nication on the other. In this approach, mechanisms of distributed
computation are expressed analogously across their many manifes-
tations (including facilitating communications between human users,
calling encapsulated procedures, managing inter-process communica-
tion, sending commands to embedded devices like robots, and receiving
data from IoT sensors), in ways that, we argue, both build upon and
extend the core strengths of block representations.

Alongside this philosophical approach, we take a distinctive per-
spective on implementing an extensible, connected, and collaborative
environment to promote and illuminate novice programmers’ learning
of distributed computing. In particular, over the past several years we
have explored the learning potential of providing uniform support,
in the form of a few intuitive abstractions, to open up block-based
programming so that students can create truly distributed applications.
We have found that construction environments can capitalize on this
opportunity by taking three key design commitments to heart.

A first design commitment is that modern environments need to
be easily extensible and afford loosely coupled, easily-discoverable
methods of integration with external resources such as web APIs.
Adding a new resource should require no code changes or user interface
changes on the client (i.e., no new blocks). This not only reduces the
implementation effort required but also presents the external resources
in a uniform, predictable way to the young learners.

Second, environments should support methods of communication
between projects. Distributed computing is ubiquitous both generally
and in the applications popular among today’s youth. Block-based
environments, designed to make computing accessible and engaging,
seem to be missing a crucial opportunity when they restrict learn-
ers from creating ‘‘social’’ applications that leverage the internet for
communications and real data sources for broad engagement.

Third and finally, collaborating with peers can be fun and engaging,
and it can also improve learning [13] and tap into the identity-building
value of computational participation [14]. Furthermore, collaboration
and teamwork are vital parts of industry applications. Supporting equi-
table collaboration that goes beyond co-located pair-programming can
help to promote engagement and valuable 21st century skills, and also
to dispel misconceptions about software being developed in isolation.

For the rest of this article, an extended version of our confer-
ence publication [15], we use the open source NetsBlox tool [16,
17] to demonstrate how advanced distributed computing concepts
can be made accessible to novice programmers. We begin with an
overview of related work that has aimed to use visual programming
environments to make core concepts and practices in computer science
accessible to novices (Section 2). We then introduce the innovations
central to NetsBlox’s approach to provide a conceptual introduction
to the powerful ideas of distributed computing: Remote Procedure
Calls and Messages (Sections 3 and 4). Next, we show how these
ideas allow exciting application areas in educational computing to be
reframed in terms of distributed computing, including physical and
virtual robotics; Internet-of-Things sensing and location-aware mobile
computing; and voice-assistant integration (Sections 5–7). Then, we
show how NetsBlox’s foregrounding of connectivity also enables novel
forms of collaboration at small-group and whole-class levels, supporting
teachers in the challenging task of facilitating and coordinating comput-
ing activities (Section 8). Next, we show how NetsBlox can maintain
its status as a ‘‘high-ceiling’’ [10] environment, through architectural
extensibility and a pedagogical commitment to supporting students as
they transition from blocks-based, visual programming to text-based
languages like Python (Sections 9 and 10). NetsBlox’s design thus
enables it to be a flexible and accessible construction environment for
learners to create personally-meaningful projects that use the lens of
distributed computing. In the last three sections, we give examples of
extended use and evaluation studies that (a) indicate that NetsBlox has
delivered on its design commitments, and (b) lay the groundwork for

its ongoing research agenda (Sections 11–13).

2

2. Related work

Scratch [18] is arguably one of the most popular tools among
block-based programming environments. Although it was not the first
visual environment designed for younger learners (Alice [19] and
Agentsheets [20] predate it), Scratch owes its popularity in large part to
making programming accessible through visual programming, creative
effects, and affordances that help novice programmers avoid many pit-
falls while also encouraging engagement and creativity. It facilitates the
creation of ‘‘Scratch extensions’’ with blocks that bring new capabilities
to the environment, including language translation and support for
interacting with a number of physical devices, such as Micro:bit [21]
and Makey Makey [22]. At the time of this writing, there are 11
supported extensions: 6 for interacting with physical devices, 2 related
to language, and 3 providing custom blocks for local capabilities such
as drawing or playing music. However, with each of these extensions,
Scratch brings in a number of new blocks, which can make it harder
to find blocks and may steepen the learning curve. Scratch supports
limited distributed data sharing via Cloud Variables, which enable
instances of the same program to share variables.

Snap! is a conceptual descendant of Scratch designed to support
more advanced features including first class lists and functions, as
well as to provide richer support for custom blocks [23]. Snap! also
allows for extensions (e.g., to physical devices via libraries), and it
provides a block for making HTTP requests. However, processing the
information returned by such requests is far from intuitive, making
internet-connected applications brittle and adding unnecessary com-
plexity that block-based environments are designed to remove in the
first place.

BlockyTalky [24], used largely in research settings, supports the
development of distributed applications for devices like the Raspberry
Pi [25] and Micro:bit [21]. It facilitates communication between the
devices allowing network messages which can be sent to a given IP
address and port, but it does not support generic internet access or the
creative programming elements present in both Scratch and Snap!.

MIT App Inventor is designed for development of mobile appli-
cations [26] and consists of ‘‘Designer’’ and ‘‘Blocks’’ editors. The
‘‘Designer’’ editor is used to add components to the app’s user interface
and the ‘‘Blocks’’ editor is used to program the app’s behavior. App
Inventor has native support for HTTP requests, and for communicating
with Lego Mindstorms and Firebase [27]. Additional capabilities are
supported using ‘‘extensions’’ that consist of new types of components
and their corresponding blocks, similar to Scratch. (In contrast, we will
see that NetsBlox uses a single self-documenting block, named ‘‘call’’,
to provide access to a large number of online services and hardware
devices.)

CloudDB, Internet-of-Things, and machine learning capabilities are
supported as App Inventor extensions, enabling apps to store data in
the cloud, to communicate with various devices like Arduino, and to
incorporate various ML-based pattern recognition capabilities. After
adding a component from one of these extensions to an app, the
user has the ability to configure the component accordingly. This may
include providing a secret access token or URL for a web-based service.
After the component has been added to the app, the corresponding
blocks will be available in the palette of the ‘‘Blocks’’ editor. App
Inventor also has some support for real-time collaboration and merging
projects.

A recent addition to the App Inventor toolbox is support for the cre-
ation of Alexa skills, although currently this is available only through
a forked version of the environment. This version changes the editor to
add new programmable entities (i.e., Alexa skills) and provides a chat
dialog for testing them. Creating Alexa skills in App Inventor is exciting,
but achieving it by modifying the editor itself is not scalable. As we will
see, NetsBlox has been able to add similar capabilities without needing
to change the user interface or introduce any new blocks.

Today, web services are becoming a required topic to teach in many

high school computer science curricula [28]. And Lim et al. believe



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
that web services should begin to be taught in introductory computer
science classes [29]. However, there have been difficulties in teaching
web services without proper tools [30]. For instance, instructors As-
sunção and Osório found that when teaching web services to computer
science undergraduates, students focused more on issues involving the
configuration of tools for the course instead of the actual material [30].
With its simple implementation of the Remote Procedure Call (RPC)
‘‘call’’ block, NetsBlox allows web services to be taught as an easy-to-
comprehend concept. The ‘‘call’’ block eliminates distracting issues of
tooling and allows novice student programmers to focus more on the
subject matter at hand without being overwhelmed—a key benefit for
introductory computer science programming classrooms.

While tool support for collaboration is generally lacking in edu-
cational programming environments, educators still try to encourage
their students to work together. Collaboration in most block-based
programming curricula (such as Snap! for the popular Beauty and
Joy of Computing course), is encouraged through side-by-side, driver–
navigator pair programming [31]. This paradigm requires the driver
to make edits to a program, while the navigator monitors progress
(e.g., by reading instructions or requirements). While this activity
structure is sometimes very effective, greater flexibility in collaboration
enables a wider variety of pair programming formats. In particular,
built-in tool support in NetsBlox enables pair programming in which
partners do not have to be co-located, and it also opens the door for
other models of collaboration.

In summary, most existing environments lack (1) a uniform and
intuitive way to access resources on the internet, (2) general sup-
port for distributed applications, and (3) flexible, synchronous and
asynchronous collaboration support. Importantly, these shortcomings
correspond to key ideas in distributed computing. Addressing them
in a unified and conceptually coherent manner not only delivers the
benefits of each of the features; it communicates a vision of distributed
computing through the block syntax, the programming interface, and
the presentation of distributed services and functions as ‘first class’
members of the toolkit (as opposed to special-purpose extensions that
are peripheral to a core set of functionality centered upon local re-
sources). In the next section, we will introduce NetsBlox’s approach to
these challenges.

3. Online data and web services

NetsBlox, built on the open source codebase of Snap!, introduces
a simple abstraction to provide conceptually simple access to online
data sources and web services. Remote Procedure Calls (RPC) allow
users to invoke functions running remotely on the NetsBlox server and
provide results. The code on the NetsBlox server invokes public web
APIs, but it also does additional work such as caching and parsing the
data received before returning it to the NetsBlox client as return values
that correspond to data types native to the environment (e.g., numbers,
strings, images, and lists).

Related RPCs are grouped into Services. Examples are Google Maps,
Weather, Earthquakes, the Movie Database, and many others. Not all
of the Services wrap web APIs to third-party providers. Additional
Services that run exclusively on the NetsBlox server and do not require
external support include a Gnuplot-based chart service, server-side
support for various games, access to WiFi-enabled hardware devices
and a hierarchical key–value store called Cloud Variables.

How much end-user complexity does it involve to access this much
functionality? Will users not get overwhelmed and confused by this?
RPCs use a single block named ‘‘call.’’ Furthermore, the block is self-
documenting. It has two pull-down menus, one for the Service and one
for the RPC. See a subset of the Services available in Fig. 1.

When a Service is selected, the second menu reconfigures itself to
show the RPCs available within the selected Service. See Fig. 2 for
the RPCs of the Google Maps service. When an RPC is selected, slots

for the required input arguments appear along with their names. See

3

Fig. 1. Services at the root menu and science sub-menu.

Fig. 2. RPCs of the Google Maps service.

Fig. 3. Example RPC calls.

a few examples in Fig. 3, which return values of type text, number,
image, list, and multi-dimensional array. In addition, Service- and RPC-
specific documentation is available by context-clicking on the call block
and selecting ‘‘help.’’ While most of the remote procedures that can be
invoked are provided to the users as is, there is one where the user can
supply their own code for execution on the server, the call RPC of the
Execute Service (see the top example in Fig. 3).



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

t
t
a
R
s
r
a
c

r
w
a
h
s
H

Fig. 4. Exploring an RPC’s return values by clicking.

Presenting Services and RPCs in this way foregrounds the idea that
he role of the student’s program is analogous in accessing any of
hese remote resources. Communicating this similarity of role through
single call interface sets the stage for seeing the similarity between
PCs that provide interfaces to cultural heritage databases, live sensor
treams, or physical or virtual robots. It integrates the full range of
emote resources coherently into the conceptual ecosystem of NetsBlox,
n important step for thinking in terms of big ideas of distributed
omputing.

At the same time, it should be noted that the dynamically-
econfiguring nature of the call block confronts a potential tension
ith the block metaphor. Specifically, the number and nature of
rguments to different RPC calls, as well as their return values, are
ighly variable, in contrast with the structural fixity of blocks under the
tandard metaphor of traditional visual programming environments.
ere, NetsBlox stretches the block metaphor as a syntactic object, in

order to emphasize semantic analogies. On one hand, two different
call blocks cannot necessarily be swapped into the same ‘‘rounded-
rectangle’’ hole in a given program for processing return values. But
on the other hand, the similarity of all of the examples of Fig. 3
communicates the parallelism in making remote requests and receiving
responses. And the ‘‘lively’’ nature of the environment enables learners
to click on a completed call block and see the response (See Fig. 4). This
enables the communicative aspects of a program to be constructed and
iteratively explored before RPC responses are integrated into program
flow to be processed.

To illustrate the simplicity and intuitive nature of the resulting
semantic abstraction from the perspective of reading and understanding
code, consider a 14-block program that shows a map of the local area
of the user and displays the Air Quality Index (AQI) anywhere the
user clicks (Figs. 5 and 6). It is not necessary to know anything about
NetsBlox or read comments to understand what the code does and how
it works. (To make the background into a pan-able and zoom-able fully
interactive map of the world requires only 20 additional blocks.)

While the primary purpose of RPCs is to provide access to resources
on the internet for student programs, one can also view them as a
way to extend the built-in capabilities of NetsBlox. In that respect, they
are similar to extensions in Scratch and libraries in Snap!. The ‘‘call’’
block is also a truly powerful abstraction for writing code. Using a
single generic block that configures itself according to context, NetsBlox
removes the cognitive load of learning a new set of blocks for every
Service (extension or library). It also eliminates palettes full of new
and unfamiliar blocks that would require searching for just the right
one. The menu based interface employs hierarchical decomposition
to arrange RPCs making them quickly discoverable and enabling ex-
perimentation. Services are grouped by categories, such as Science or
Games, so users can quickly explore what is available.
4

Fig. 5. Current air quality project. Top two scripts: stage. Bottom script: sprite.

Fig. 6. Running the current air quality project.

Contrast that with Snap! libraries: users need to use the file menu,
libraries option to import a given library. The action loads a potentially
large number of blocks into one or more palettes (e.g., motion, control,
etc.). The user then has to inspect the various palettes to see what new
blocks became available. Some of these blocks are commands, while
others are variables or reporters. Input slots do not have names but
they may show default values. Though it may be obvious how to use
some libraries and their blocks, others can be quite complicated. If the
user decides not to use the library or only needs a block or two, they
have to use the ‘‘Unused blocks’’ menu command and corresponding
pop-up dialog to remove the clutter from their command palettes.

Finally, the call block and its menu based abstraction are ‘‘back-
ward’’ compatible with the library approach, and the two can be used in
tandem when appropriate. Specifically, one can create libraries of cus-
tom blocks that wrap RPC calls and extend their functionality if desired.
For example, the MovieDB service, providing access to information on
tens of thousands of movies, has over 60 RPCs. We created a library
that has 21 custom blocks for the most important functionality.

Another factor that can make the RPC concept familiar to students
is that it closely resembles custom blocks. Both of them have multiple
inputs and a single output, and are blocking calls that cause the
program to wait for the result. The only difference is that RPCs run
on the server.

As mentioned above, RPCs return data in the form of numbers
(e.g., temperature), text strings (e.g., city name), lists (e.g., movie IDs),
multi-dimensional arrays (e.g., geolocation search results), or images
(charts, maps, movie posters, etc.). These are built-in data types and
students are already familiar with them. Users do not need to de-
serialize the data, parse text, or process a JSON data structure to extract



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

u
s

a
o
(
t
c
i
a

4

p
n
j
a
d
t

S
a
o
t
t
d
i

a
p
w
‘
j

t
i
t
i
o
h
m
s
m
a
F
t

u
t
d

N
a
d

s
a
o
t
a
p
o
m
p
a

u
r
c
t
a
i
r
T
d
a
p
a
u

s
c
i
m
t
t

l

Fig. 7. Message type definition.

Fig. 8. Message passing blocks.

seful information from results, unlike with HTTP calls available in
ome other tools.

NetsBlox Services allow students to create projects that utilize
wide array of information freely available on the internet. Many

f these are sources that students already use in their daily lives
e.g., maps, weather, movie ratings, etc.). Others are related to topics
hey may care about, such as climate change or sports. Helping students
reate projects tied to their interests and related to real world issues can
ncrease their motivation to learn to program and make programming
nd computer science more relevant to them [32].

. Communication

Teenagers spend a lot of time on social media and with online multi-
layer games. What kind of support would a programming environment
eed, in order to let them create such applications as opposed to
ust consuming them? Message passing is probably the most important
bstraction in distributed computing. We incorporated it into the fun-
amental design of NetsBlox to enable projects running anywhere on
he internet to communicate with each other.

Messages in NetsBlox are very similar to events in Scratch and
nap!. However, messages are more powerful, as they can carry data,
nd they do not have to stay within the project; they can travel to any
ther NetsBlox project that is running anywhere on the internet at the
ime of sending. Messages have types, defined by a name and the data
he message is to carry (i.e., a set of input slot names). Message type
efinition is done similarly to how one defines a custom block header
n Snap!. See Fig. 7 for an example.

Only two blocks are needed for message passing: one for sending
nd one for receiving. Selecting a message type in the ‘‘send’’ block
ull down menu reconfigures it to show the corresponding input slots
ith their names provided. Similarly, selecting a message type in the

‘when I receive’’ receiver hat block shows the same fields as variables,
ust like a custom block definition does (Fig. 8).

Message data can be built out of any of the data types supported by
he environment—even scripts that the receiver can later run! The data
s not strongly typed, so the sender and receiver must agree on what
he message means. In particular, if the two projects need a prescribed
nteraction pattern, then their authors need to agree on a sequence
f different messages of typically different types. In other words, they
ave to design a protocol. However, for simple applications, a single
essage type suffices, and this provides a powerful entry point. As

tudents’ applications and communications gain in complexity, the
essage construct scales with their needs. Consider Fig. 9, showing
six-block chat application (using the ‘chat’ message type defined in

ig. 7). Two or more students can run instances of the project shown
o chat with each other.

In embodying key concepts of distributed computing, defining and
sing messages plays a complementary role to using the call block
o invoke RPCs. With messages, learners are put in the position of

esigning APIs and protocols, and as they develop experience with

5

Fig. 9. Simple chat app.

Fig. 10. Chatroom server.

etsBlox projects that both send and receive messages, they gain
more symmetric perspective on request–response relations among

istributed networked processes.
Another important concept in message passing is addressing. The

ender must specify where to send the message. NetsBlox supports local
ddressing. A NetsBlox project can consist of multiple subprojects, each
f which plays a Role in the project, while the project itself is referred
o as the Room. (This naming convention comes from the fact that we
nticipate many students will use message passing for creating multi-
layer games.) Subprojects can be assigned to different users to run
n different machines, e.g., play a game against each other. In turn,
essages can be sent to any role or group of roles within the same
roject. For example, in the chat application in Fig. 9, the chat messages
re sent by any one role to all the other roles, i.e., to others in room.

Messages can also be sent to any running application. A globally-
nique address is constructed by the tuple (username, project name,
ole name), since each of these is guaranteed to be unique within its
ontext. (The role name is optional. If a role is not specified, messages
o the project are delivered to all its roles.) We call this global address
public role ID, since local addressing is done using role names. There

s a Service and an RPC that returns the public role ID of the currently
unning project, so that students do not have to manually type it in.
his approach also allows sharing and running the same project by
ifferent users without having to update the address manually. Global
ddressing is useful when one wants to support a dynamic number of
articipants in a distributed application. For example, the simple chat
pplication of Fig. 9 can be extended to be an actual chatroom that
sers can dynamically join and leave.

In this case, there are two separate NetsBlox projects: a chatroom
erver and a client. The protocol requires two message types: one,
alled ‘connect,’ for the client to register with the server by sending
ts own address; and another, called ‘chat,’ for sending actual chat
essages. The server maintains a list of client addresses by handling

he connect messages and simply rebroadcasts any chat messages to
he list of addresses it has (Fig. 10).

The client sends its own address to the server and then, in a forever
oop, it asks its user to type in a message, which it then sends over to



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

t
s
F
l

e
g
r
s
a

u
c
p
d
‘
r

N
a
i
b
c
p
m

a
E
q
m
s
t
g
u
c
t

5

q
l
d
m
e
W

Fig. 11. Chatroom client.

he server. When it receives a chat message (routed from the server), it
imply displays the original sender and the message text. See Fig. 11.
or simplicity, we omitted a more involved refinement, to display the
ast several messages as opposed to just the last one.

In classroom implementations of the chat project, we typically
xplain the task, describe the client–server approach and introduce
lobal addressing. Next, we show the chatroom server program and
un it on the teacher’s computer, displayed on the projector screen. The
tudents are then asked to implement the client. This has proven to be
n engaging activity for young learners.

Other examples of illustrative distributed computing applications
sing message passing include peer-to-peer networking and volunteer
omputing—citizen science projects in which a server (also a NetsBlox
roject) divides up a parallel complex problem into small tasks and
istributes them to volunteer workers (running the same NetsBlox

‘client’’ project). The famous NASA SETI@home project [33,34] is a
eal-world example of this kind of distributed computing.

These examples illustrate that the message passing abstraction in
etsBlox has a low threshold, enabling students to write non-trivial
pplications with just a few blocks. Further, it also has a high ceil-
ng, allowing students to create complex, distributed applications in a
lock-based environment. The abstraction hides a lot of the accidental
omplexity associated with message passing and networking, but it ex-
oses the most important concepts of distributed computing, including
essage types, protocols, latency, and addressing.

Note that Services are not restricted to provide synchronous replies
nd can include message passing as well. For example, a call to the
arthquake Service may need to provide data on thousands of earth-
uakes in the requested geographic area. Instead of returning a huge
ulti-dimensional array in a single reply, this Service sends one mes-

age per earthquake, with each message containing the date, magni-
ude, and location of the earthquake in separate fields. The N-Player
ame Service that provides generic support for turn-based games also
tilizes messages. For example, upon receiving an ‘‘end of turn’’ RPC
all from one player, the Service sends a message to the player whose
urn is next.

. Robotics reimagined

The traditional approach to educational robot programming re-
uires a local connection to the device via USB or Bluetooth to down-
oad programs that can later be executed on the robot. NetsBlox takes a
ifferent approach, with the goal of allowing experiences of program-
ing and interacting with robots to enhance and benefit from learners’

merging understanding of distributed computing. Under our approach,

iFi-enabled robots can connect to and register with the NetsBlox

6

server directly via the internet. In turn, a Service called RoboScape
allows NetsBlox programs to send commands to registered robots.
The NetsBlox server handles routing commands to the robots’ wireless
connections. Each robot runs a command interpreter that executes these
commands and can respond by sending messages back to the user’s
program, via the NetsBlox server. Such messages might contain, for
example, requested sensor values.

This approach has several advantages. First, from the perspective
of supporting distributed computing education, it connects robotics to
the RPC and message-passing paradigm used elsewhere in the Nets-
Blox platform. Second, from the perspective of lowering barriers to
educational robotics, the student’s code is written and run from the
NetsBlox project inside the browser, making it much easier to test and
debug. Third, from the perspective of expanding robots’ functional-
ity, since student programs (and consequently all programs control-
ling robots), can communicate with each other, collaborative robotics
becomes feasible.

Fig. 12 shows a very simple remote control program that uses the
keyboard to make a robot spin by making the two wheels rotate in
opposite directions (s key); stop (space key) or beep at 400 Hz for 1 s
(b key). The initialization code sets the robot ID to the last 4 digits of
the MAC address and makes the robot beep, so that the user can check
that the robot is now registered and ‘connected’ at this address. Note
that the RoboScape service uses a generic ‘send’ RPC to issue text-based
commands to the robot. The two input arguments are the robot ID and
the desired command. Why not have separate ‘set speed,’ ‘beep’ and
similar, more specific, RPCs? RoboScape intentionally makes it possible
to ‘‘eavesdrop’’ on other students’ communication with their robots and
inject new commands. Specifically, when a robot receives a command,
it sends an acknowledgement in the form of a NetsBlox message. Any
NetsBlox project can subscribe to receive a robot’s acknowledgement
messages, not just the sender of the initial message. Moreover, the
robots do not check who sent a command to them; they execute all valid
commands received. These were intentional design decisions, intended
to motivate the need for cybersecurity and to make the subject much
more tangible and fun to learn. For example, students can encrypt the
actual textual commands, to try to prevent adversaries from observing
the commands they are sending to their robots or sending their own.
The robots support a number of encryption schemes, but the NetsBlox
program and the robot need to agree on the key first. Simply sharing
the key sent in clear text makes it possible for others to intercept it
when it is initially sent (an adversary will see, for example, a ‘‘set key
1 2 3 4’’ message acknowledgement from the robot) and break the
encryption easily. That motivates the need for secure key exchange,
which we provide through a hardware feature on the robots. The
cybersecurity functionality is largely implemented through the Service
on the NetsBlox server, which allows robots to receive cybersecurity
‘updates’ without requiring actual firmware changes, reducing main-
tenance requirements for use with new curricula as they are created.
There are a number of other cybersecurity concepts that the RoboScape
Service helps to motivate and teach. We have carried out multiple
successful and popular high school cybercamps built around wireless
robotics and cybersecurity [35].

Since the student’s running program and the robot do not have to
be co-located, remote robotics also becomes possible. All one needs is
a webcam streaming a video of the robot ‘‘arena’’ and multiple stu-
dents can use the robots from their own homes. NetsBlox’s networking
features can be combined with more traditional Bluetooth-connected
robots to create additional remote robot programming configurations.
For example, in the Spring of 2020, after the pandemic started, Bird-
brain Technologies set up multiple Hummingbird robots and connected
them to a laptop, where they run a NetsBlox program that controls the
local robots using messages they receive from remote NetsBlox projects.
Students are provided with various remote template projects that have
the required message types already predefined and encapsulated in
custom blocks. They can then use these blocks in their programs to



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

c
m
o
w

a
N
c
a

V

t
s
o
F
p
o
t
v
o
t
t
c
v
w
t

i
c
d
s
i
i
d
t
f
s
l
e

l
m

Fig. 12. Simple robot control program using keyboard events.

ontrol the robots remotely. The first command sends the ‘‘reserve’’
essage that assigns the robot to the given user for a fixed amount

f time, if it is available. The robot action is live-streamed in another
indow [36].

Finally, other configurations and collaborations between students
nd robots are possible; for example, using communications among
etsBlox projects running on students’ computers to enable them to
oordinate the actions of their Bluetooth-connected robots as they move
bout in a shared physical space.

irtual robotics

Real physical robots are fun, and students love hands-on activi-
ies. However, there is a paradox: robots are either inexpensive but
imple, or powerful but expensive. Moreover, a collection of robots
f any kind can be hard to maintain, especially in a school setting.
urthermore, connecting wireless devices to a school network can be
roblematic, as IT departments are often hesitant to provide access
r support. Our work-in-progress RoboScape Online project responds
o these challenges by providing a flexible, modular, and immersive
irtual robotics environment. A group of students can share an instance
f a virtual world, in which each student has their own virtual robot
o program [37]. The virtual robots are programmed and controlled
hrough the RoboScape Service, and students use the same blocks and
ommands to control virtual or physical robots. However, because the
irtual robots’ capabilities are simulated, there is no physical limit to
hat they can do. Nevertheless, virtual robots are still tangible for

oday’s youth, accustomed as they are to virtual experiences.
The simulated nature of the environment and the robots’ functional-

ty can make virtual robotics an ideal setting for introducing advanced
omputing concepts. This is because many of the constraints of physical
evices can be controlled to serve pedagogical goals. In some learning
ettings it can be useful to remove physical limitations (such as noise
n sensor signals or variability in actuators); while in other settings
t can be useful to amplify them (e.g., when students are focused on
esigning algorithms to be robust to these issues) [38]. Furthermore,
he physical robots and their low-cost sensors are inherently unreliable
or many autonomous tasks, creating extra difficulty for students. The
imulated sensors and actuators are more reliable and have reduced
atency for commands and responses sent over the network, further
nabling lessons on autonomous tasks.

Virtual robots can offer a wide range of capabilities in terms of
ocomotion, sensors, and actuators. For example, they can ‘contain’ the
ost advanced hardware, from GPS to Lidar, without requiring any
7

Fig. 13. Simulated sensors available as services.

additional costs or configuration to make them available to program-
mers at any level. These sensors or actuators are exposed to students in
the NetsBlox environment as additional Services, providing a simple
interface familiar to students already working with the robots. For
example, when students access an environment where their robots have
a Lidar sensor enabled, they simply use a ‘getRange’ method on a
‘LidarSensor’ Service (see Fig. 13). These devices are specified through
code, so their functionalities can vary for different challenges, and
new Services can be easily created. Virtual worlds can range from
urban environments to deserts; from the open ocean to outer space.
Without the physical limitations on what conditions can be represented,
students can program robots in environments that would otherwise be
impossible for them to access at all (e.g., a reactor with a radiation
leak, or a space station orbiting a distant star). Visual content in
environments can also be used to provide additional context to an
activity, such as to integrate cultural artifacts or historical information.

The virtual robotics capability was originally created as a stand-
alone program made in the Unity game engine. While this provided a
simple editor for allowing students to create their own environments
and higher graphical quality, it was found that this approach led
to many of the same issues previously experienced with school IT
departments and physical robots. Not only did the software require
approval and support for installation, but it continued to require special
assistance to allow access through school firewalls, and some schools
relied on hardware such as Chromebooks which were not necessarily
compatible. Switching between the browser window with their Nets-
Blox code and a full screen graphical representation of the virtual world
posed some frustration to students, who struggled to manage their
windows to gain a clear view of both during activities. In addition, the
server software, in order to take full advantage of the Unity editor, was
required to run a graphics-less instance of the client software, which
created significant costs to host the students’ simulations.

To alleviate these issues, the client software was rewritten to not
only run in a web browser, but to be inserted into the NetsBlox interface
itself, so students would be able to interact with the virtual world with-
out having to move away from their code. Additionally, while Unity
provided support to build the software for Windows, macOS, Linux,
and mobile platforms, a browser-based system is compatible with all
these platforms and more, and it does not require students to find and
install the right version. Most platforms capable of running NetsBlox
itself are able to add the virtual robots on top of it. A WebSocket-
based networking approach was found to be allowed by most school
IT departments, providing a method for real time updating of the
simulation environment on students’ browsers. The server software
was rewritten to be significantly lighter-weight than the Unity version,
allowing entire classrooms of students to share a small cloud server.
The updated software has been tested in high school classrooms, with
students appearing to enjoy the improved ease-of-use.

Through the RoboScape Online software, students can view the
entire virtual world on the classroom projector or on their own com-
puters/devices (Fig. 14). They can also put on a VR headset to get
a first-person view and a truly immersive experience (Fig. 15). The
RoboScape Online environment is also designed to be accessible re-
motely, so students can share worlds regardless of their geographic
location. All information of the robots’ state is stored on the server, so
a consistent virtual world is provided to all students. The environment
looks just like a video game, except that students create and program
it, rather than just playing within it. We have begun implementing
RoboScape Online activities with high school students and in summer
camps, where students work on robotics and cybersecurity challenges.



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

6

s
a
t
t
E
c
k
w
d
m
n
r
c
h

c
b
a

Fig. 14. Bird’s eye view of an environment where the students have to implement
autonomous driving to navigate from the red to the green area using a simplified
Lidar sensor. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 15. First person view of a maze environment from one robot.

. Mobile device integration

Many schools now do offer makerspaces and other opportunities for
tudents to get their hands on simple embedded computers, sensors,
nd educational robots. However, many schools still do not have access
o these luxuries, and even those that do are typically limited by cost as
o the number and complexity of sensors and devices they can provide.
ven when this hardware is available to students, schools typically
annot allow it to leave the classroom due to its expense; thus, these
inds of activities are necessarily in-person, and restricted to the school
here the lab is located. At the same time, almost every student in
eveloped and even developing countries has a smartphone (or other
obile device) that contains a rich collection of sensors and is con-
ected to the internet. This presents an opportunity to teach concepts
elated to the Internet of Things (IoT), networking, and distributed
omputing in a manner that is not only accessible to novices but also
ighly engaging and motivating.

To make this approach a reality, we have created a mobile app
alled PhoneIoT, which allows the built-in sensors of the device to
e accessed remotely from NetsBlox projects. Sensor data is made
ccessible through two popular networked sensor paradigms: polling,
8

Fig. 16. Sensors available through PhoneIoT.

Fig. 17. Streaming data from the 3-axis accelerometer.

via RPC return values; and streaming, via message passing. The list of
RPCs providing sensor values is shown in Fig. 16.

If a sensor is not present on the given device, is disabled, or is
otherwise blocked by app permissions, it is simply logically disabled
as a target for interactions, and calls to it from NetsBlox will return an
error message explaining the problem. Streaming can be turned on by
the ‘listenToSensors’ RPC, and the data arrives via various messages
depending on the sensor requested. Fig. 17 shows how to request
acceleration data at 10 samples per second (i.e., with a 100 ms update
interval), and the corresponding message handler hat block.

Note that in Fig. 17 the ‘listenToSensors’ RPC is invoked through
a puzzle-shaped run block (a command block), as opposed to the
rounded-rectangle call block (a reporter block). NetsBlox’s run block
offers access to the same Services and RPCs as the call block, but it
discards the return value. All RPCs give a return value (even remote
commands reply with an ‘‘Ok’’ or error message), but as students write
more complex programs, it is sometimes convenient for them to use the
run block because it can be inserted directly into the program flow.

PhoneIoT also allows access to the touchscreen through a collection
of customizable widgets that can send messages to a user’s NetsBlox
project. This makes it possible to configure a Graphical User Interface
(GUI) on the phone by implementing message handlers in the very
same NetsBlox program that processes the sensor data and handles
asynchronous events from the mobile device. Hence, students can
build truly distributed applications that run on two or more com-
puters/devices connected via the internet and that interact with the
physical world via sensors. To keep the interface to these features as
simple as possible, controls are created and modified through individ-
ual RPCs such as ‘‘addButton’’ or ‘‘clearControls’’. The RPCs for creating
and configuring the GUI elements are shown in Fig. 18.

There are a few different approaches to creating native graphical
applications that run on different operating systems. One is to logically
replace the widgets with native equivalents and build a communication
bridge for applying changes and receiving interaction events. Although
this approach would make PhoneIoT apps look like native iOS and
Android apps, it would also mean that PhoneIoT is restricted to only
the intersection of widget and style options available to all platforms.
Instead, PhoneIoT includes a simple, custom rendering engine that

draws logical widgets on a canvas. This allows for total control over



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

t
p
c
l
c
d

k
t
a
N
c
r
P
t
r
c
a
t

a
i
a
P
e
i

s
l
f
n
i
t
b

t
t
‘
c
i
s
s

N
B

Fig. 18. GUI widget creation and configurations RPCs.

he layout and appearance of the controls, making it possible to sup-
ort a broad range of style options, as well as interactive animated
ontrols (e.g., joysticks and touchpads). This also allows PhoneIoT to
ook exactly the same on all devices, which could help reduce student
onfusion when working in team projects where group members have
ifferent types of phones.

When adding controls to the PhoneIoT display, the system must
now the location and size of the new control; this information is
ypically passed as four separate RPC input values for ‘‘x’’, ‘‘y’’, ‘‘width’’,
nd ‘‘height’’. These concepts already exist under the same names in
etsBlox, although the coordinate system is different. In NetsBlox, the
enter of the screen is (0, 0), with increasing values going up and to the
ight, and a sprite’s location is the position of its center point. However,
honeIoT uses the more common graphical unit system where (0, 0) is
he top left corner of the display, increasing values go down and to the
ight, and the location of a control is its top left corner, rather than its
enter. Although this coordinate system is new to students, it introduces
more real-world graphical coordinate system which could be applied

o many other graphical environments outside of NetsBlox.
Once an app allows access to the device from the internet, security

nd privacy become important considerations. Each mobile device is
dentified by a unique 12-digit hexadecimal ID: their MAC address (or

random, persistent value if the MAC address is inaccessible). The
honeIoT app generates an 8-digit hexadecimal password which expires
very 24 h. Both of these need to be provided by the NetsBlox project
n order for PhoneIoT to accept connections (see Fig. 19).

Additionally, some sensors are intentionally limited by the app, for
ecurity and privacy reasons. For instance, only the current volume
evel from the microphone is provided (rather than the actual wave-
orm). In addition, the app does not allow a network request to take a
ew picture from the camera without user confirmation on the phone
tself. (An image display widget, when clicked, asks the user whether
hey want to take a picture. If they do, this and only this picture will
ecome available to NetsBlox through the ‘getImage’ RPC.)

Moreover, it would not be acceptable for a user to be unknowingly
racked or spied upon through the NetsBlox interface due to forgetting
o close the app. To prevent this, unless explicitly requested with the
‘run in background’’ setting in the menu, the app ceases all communi-
ation with the server and rejects all incoming requests upon being put
nto the background or when the screen is turned off. We believe these
afeguards are sufficient to allow K–12 audiences to use the app while
till affording them reasonable internet privacy.

It is worth emphasizing that integrating mobile devices into the
etsBlox framework with PhoneIoT required no changes on the Nets-
lox client whatsoever. PhoneIoT introduces no new programming
9

Fig. 19. PhoneIoT configuration screen.

Fig. 20. An XBox-like game controller made of buttons and joystick controls (rotated
to landscape).

abstractions, no new interaction primitives, and no new blocks that
might present barriers to students. Any user who is already accustomed
to NetsBlox RPCs and message passing should quickly feel comfortable
using PhoneIoT through its familiar interfaces. It is also important to
note that PhoneIoT with NetsBlox is not a mobile app development
environment. It simply treats mobile devices as intelligent, remotely
controllable IoT devices, making it possible for students to create
engaging distributed applications. Users can create a simple compass
that displays the current heading on both the computer and phone
screens; or they can turn their phone into a remote controller for games.
They can use the accelerometer to control a sprite by tilting the mobile
device; or they can use buttons, joysticks and sliders to make a complex
game controller as shown in Fig. 20. Multiple devices, across multiple
Services, can be linked to the same NetsBlox program, so it is also
perfectly feasible to create a robot remote controller using PhoneIoT.

Exercise tracker

To illustrate how PhoneIoT can be used to create powerful and
engaging projects, we describe a simple exercise tracker which plots the
user’s route on top of a Google Map displayed in the NetsBlox client.
It streams the updated display back to the mobile device and prints
the total distance covered as well. To illustrate the use of PhoneIoT’s
custom GUI controls, we also include start/stop buttons.

Fig. 21 shows a portion of the initialization code. As mentioned
above, for security the device ID and password displayed in the
PhoneIoT menu must manually entered in the NetsBlox client code



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
Fig. 21. NetsBlox code to initialize communication with the PhoneIoT app and add
GUI widgets on a mobile device.

Fig. 22. Exercise tracker code. The ‘‘add point’’ custom block maintains the distance
covered.

to establish the connection with the phone. If the correct credentials
are provided, PhoneIoT will accept configuration RPC calls such as the
ones in the figure, which clear the screen and add controls at certain
coordinates and dimensions. The last two blocks in the figure enable
GUI event messaging from the phone and request location data updates
every 2 s (2000 ms), respectively.

After initialization, the NetsBlox program receives location updates
via the ‘‘location’’ message type and begins plotting the course. Each
message provides the latitude and longitude (along with heading and
altitude), which can be converted into screen coordinates with the
GoogleMaps coordinate translation RPCs. See Fig. 22. The ‘‘getDis-
tance’’ RPC of the GoogleMaps Service provides the distance between
two map locations, though one needs to perform some averaging to
reduce errors due to the variation in reported location caused by GPS
inaccuracy [39]. This is done inside the ‘‘add point’’ custom block
(i.e., function) in Fig. 22. The only other logic required is to handle
the stop and start events from the custom buttons on the phone. See
Fig. 23 for the final app screens in NetsBlox and PhoneIoT.

7. Voice assistant integration

Enabling students to integrate voice assistants, like the Amazon
Echo, into their distributed programs, is yet another way to make
programming more compelling and meaningful for young learners.
Especially when combined with the other NetsBlox capabilities, this
creates many exciting opportunities for students. Students can make
games where players control their characters with voice commands or
even control network-enabled robots using the RoboScape Service RPCs
10
Fig. 23. NetsBlox client stage (left) and phone display (right) of the exercise tracker
app at slightly different moments.

described in Section 5. Even if they simply want to create a standalone
skill, they are able to utilize many of the standard Services such as
Weather, MovieDB, and Translation. Furthermore, this integration is
possible using only the RPC abstraction (and first class functions)
following the NetsBlox design commitment to loosely-coupled, easily
discoverable methods of integration.

Before discussing integration with NetsBlox, it is important to pro-
vide a high-level overview of how spoken requests are handled by
Alexa. Like many other voice assistants, it works by recognizing specific
intents of the user. An intent is a verbal structure defined by a number of
example utterances. These utterances can contain empty ‘‘slots’’ which
are placeholders for values like names, locations, etc. The spoken words
used for each slot are then passed as arguments to the handler for the
specific intent.

NetsBlox provides an Alexa Service, a collection of RPCs for creating
a skill from a configuration (defined as a 2D list), along with additional
helper RPCs. Using this Service, users can define intents, give example
utterances, and provide intent handlers as anonymous functions. When
the ‘createSkill’ RPC is called, the NetsBlox server creates the skill
for the given user and stores the handlers in its database. When a
command is spoken to the Alexa skill, the request is handled entirely
by the NetsBlox server using the appropriate user-defined block-based
intent handler. That is, when an intent is received by NetsBlox, the
user-defined intent handler is retrieved from the database, compiled to
JavaScript, and executed with the received values for each slot. Since
the intent handlers can utilize the message passing blocks, they can be
used to forward messages to student projects, such as games where the
players are controlled via Alexa.

Not only does this allow young learners to develop Alexa skills
but it also facilitates first-hand experience with serverless computing, a
contemporary distributed computing paradigm made popular through
services like Amazon Lambda. The user-defined intent handlers are
stateless functions compiled and executed by the server on demand. If
the function requires shared state, cloud storage can be used explicitly
via NetsBlox cloud variables. The ability to provide young learners
with hands-on experiences using contemporary computing paradigms
in a manner that also simplifies the programming of devices like the
Amazon Echo is an exciting opportunity for introductory computer
science education.

As an example, consider Fig. 24, showing the definition of a sim-
ple skill that provides information about atmospheric carbon dioxide
concentrations measured on Hawaii by the NOAA. In addition to the
Alexa service and its RPCs, a few custom blocks are provided to ease
the cumbersome parts of defining a skill. The ‘Alexa skill’ block creates
a data structure, a multi-dimensional array that contains required parts



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

o
t
h
c
s
t

s
a
i
c
c
A
b
s
f

T
s
d
i
n
c

a
r
v
I
s
A
c
R
i
p

f
t
(
i
‘
A
n
p

8

i

c
p
s
a
d

m
l
t
i
p
N
t
t
p
F
t
T
l

A

m
l
f
i
d
t
b
s

Fig. 24. Climate skill.

f an Alexa skill, such as its name, the various phrases that it accepts
o perform its various actions, or intents. The custom block ‘when I
ear one of’ specifies a similar data structure for one intent. These
ustom blocks shield users from having to assemble the necessary data
tructures and instead put the focus on the interesting part: the code
hat runs when the user invokes the intent via an Echo device.

In this example, we use one of the climate change related Services,
pecifically calling the ‘getCO2Trend’ RPC to return a two-dimensional
rray containing the atmospheric carbon dioxide concentrations reg-
stered at the Mauna Loa observatory between 1961 and 2022. We
ompute the difference of the first and the last elements of the second
olumn and instruct Alexa to say the result in a sentence. The only
lexa RPC we need to call is ‘createSkill.’ This RPC configures the skill
oth on the Alexa and the NetsBlox servers. If we want to tweak the
kill later, we can use the ‘updateSkill’ RPC, and we can even test it
rom within NetsBlox by using the ‘invokeSkill’ RPC.

Once ready, the user still needs to enable the skill via the Alexa app.
o invoke this intent, the user needs to say: ‘‘Alexa, ask my climate
kill how bad is it’’. In turn, Alexa will reply ‘‘Atmospheric carbon
ioxide concentrations increased by 101 ppm in the last 60 years’’. It
s important to note that the NetsBlox project that creates a skill does
ot need to continue running once a skill is deployed. After the initial
reation, everything that the Alexa app needs is on the NetsBlox server.

In addition to RPCs, NetsBlox Alexa skills can use message passing
s well. The example in Fig. 25 shows a skill that can control a
obot remotely, replicating the keyboard-based controls of Fig. 12 with
oice commands to trigger three message types: spin, stop, and beep.
n this implementation, messages come to the NetsBlox project, and
o this project must remain running, to receive messages from the
lexa skill and send the required commands on to the robot. (We
ould have removed the NetsBlox intermediary and called the ‘send’
PC of RoboScape directly, to turn, stop the wheels, or beep, but the

mplementation shown here has the purpose of illustrating message
assing.)

The skill definition in Fig. 25 has three corresponding intents; one
or spinning, one for stopping, and one for beeping. To respond to
he intents, it accesses a cloud variable that stores the global address
public role ID) of the NetsBlox project actually driving the robot, and
t sends the appropriate messages to this project. The code for the
beep’ intent illustrates how to include parameters in intent invocations.
nother custom block allows the user to specify the data type and a
ame for the parameter, which the user can then place in the correct
osition within the phrase: ‘‘to beep at pitch hertz’’.

. Collaboration

Once we remove the walls around our programming environments,

t becomes possible to support collaborative programming on projects

11
Fig. 25. Robot driver skill.

in flexible ways. In particular, NetsBlox allows users to issue and
accept invitations to collaborate on a project. Collaborators at any
location can then work on the same project simultaneously. Concurrent
editing operations show up on everyone’s screen. The server resolves
conflicting changes by approving the first one received, and rejecting
subsequent ones. However, since the typical latency is under 100 ms,
this rarely happens.

Since NetsBlox stores only a single shared copy of the project,
students can also work asynchronously. This is similar to how popular
collaborative editing tools such as Google Docs or Overleaf work.
However, there is a conceptual difference between static documents
and dynamic, continuously-executing block-based code. The latter has
a state, which includes the values of variables and the appearance and
position of sprites and the stage. Since each user’s computer executes the
ode independently, it would be hard, if not impossible, to synchronize
rogram state. Thus, NetsBlox only keeps the source code itself in
ync across collaborators. That is, the scripts will be the same, but the
ppearance of the stage and the values of variables will typically be
ifferent across collaborators at any given moment.

NetsBlox’s robust support for collaboration enables pair program-
ing, team projects, remote tutoring, and remote collaboration. The

atter two have been especially important for online learning during
he COVID-19 pandemic. Recent research has shown that collaboration
n pair programming environments is conducive to the development of
roblem solving and programming skills in young women [40]. Using
etsBlox, we plan to investigate equitable methods of collaboration

hat promote student engagement and improve student learning objec-
ives. Furthermore, NetsBlox’s collaboration infrastructure also makes it
ossible to try out novel ways of teaching with collaborative activities.
or example, designing for collaboration can involve assigning subtasks
o collaborating students, an activity structure supported by NetsBlox.
his can also help highlight problem decomposition—a key aspect of

earning programming and computational thinking [41].

ctivity galleries

Another novel way to collaborate and share one’s work with class-
ates and the teacher in NetsBlox is through Activity Galleries. Gal-

eries enable members of a class or group to publish in-process or
inal-form NetsBlox projects to a shared space. A teacher can optionally
nitialize a Gallery with a starter project (in Fig. 26, the starter project
rew a square and invited students to generalize that code). This allows
he class activity to focus on creating refinements or extensions to a
asic program. When students are ready to publish their work, they
imply click a ‘camera’ icon, shown at bottom-left of Fig. 26. After



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

e
s
c
t
c
a
p
o
r

d
r
u
c
d
p
o
I
g
n
w
t

w
d
w
‘
t

a
d
o
o
w

c
i
t
a
l
c
a
o
b
t
c

Fig. 26. One class’s Turtle Geometry activity gallery.

ntering optional information about their submission, their work is
tored on the server and a thumbnail immediately appears in the
lass Gallery (shown at left in Fig. 26). A published entry preserves
he project’s state at the time of publication, and anyone in the class
an click on the corresponding thumbnail to view, comment on, load,
nd/or remix and republish the entry. Finally, Galleries are scoped to a
articular group (e.g., a class section), so the group can build upon its
wn members’ insights, with students seeing, giving feedback on, and
efining each other’s ideas.

Activity Galleries enable group-based design [42–44], in which the
iversity of thinking present in the group is leveraged as a critical
esource for the functioning of the activity. Fig. 26 shows how a class
sed a Gallery to support the challenge, ‘‘Make a Polygon’’ starting from
ode that created a square. Different students took up the challenge in
ifferent ways, and the collective thinking grew increasingly more so-
histicated. Here, for example, one line of inquiry pursued the question
f ‘star’ polygons, like the one shown in the main workspace of Fig. 26.
n another line of inquiry, students began to introduce arguments or
lobal variables to their initial solutions to make polygons with any
umber of sides. Later in the session they worked to make polygons
ith a fixed perimeter, and finally they considered ways to unite the

wo separate lines of inquiry, involving standard and star polygons.
A range of classroom activity types can be supported with Galleries;

e describe three here. First, Generative Activities [45] encourage stu-
ents to produce artifacts that reflect their own distinctive and creative
ays of looking at a given problem or situation. After seeing the

‘space’’ of solutions the group generates, the class may reflect on how
o generalize across solutions.

Second, in Design Challenges [46], students may share solutions to
more open problem. When the design problem is shared among stu-

ents, the classroom group becomes an authentic audience for partial
r complete solutions. Activity Galleries become more than a showcase
f final projects; they offer a visual trace of individual and collective
ays of thinking about the problem as they mature and interact.

Finally, combining aspects of the two activity types above, Galleries
an be a good setting for testing and iterative refinement of code. For
nstance, when learning sorting algorithms, a Gallery might begin with
he challenge to create and publish implementations of one or more
lgorithms. Next, students might be given the task to design input
ists that would give the algorithm trouble. Working together as a
lass, they can develop characterizations of worst-case inputs for each
lgorithm, constructing rather than simply reading about these features
f sorting approaches. Such activities, in which students play roles of
oth algorithm-creating and algorithm-challenging, can also be used
o introduce ‘‘adversarial’’ techniques that are themselves important
omputing concepts.
12
Fig. 27. NetsBlox architecture.

9. Extensibility

The NetsBlox environment has two major components: the client
and the server. The client has unlimited undo and redo support and the
capability to replay the entire history of the project. This also serves as
simple version control, since one can go back to any past point in the
history and continue from there. The NetsBlox client also adds a new
block category to Snap! called Network, containing the RPC block and
blocks related to message passing.

Unlike most other environments, most NetsBlox functionalities are
provided by the server, which runs the various Services, routes mes-
sages, and manages collaboration. The architecture of the server is
modular (see Fig. 27), facilitating extensibility. To add a new Service,
only a single JavaScript file (based on a template) needs to be added.
Some Services are as simple as a few lines of code, while others that
provide more complex functionality can get large. However, all Services
are well separated, with a simple API connecting them to the core.

The power of this approach is illustrated by the fact that adding
support for hardware devices in the form of the RoboScape Service that
manages WiFi connected robots or the PhoneIoT app that connects to
mobile devices required no change on the client side or the server core
at all. Most importantly, students do not have to learn any new blocks
when a new Service is added. All they see is a new, self-documenting
option in the pull down menu of the ‘‘call’’ and ‘‘run’’ blocks.

It is important to note that the clients access the server via a
well-documented, open, RESTful API. Therefore, all the Services and
message passing support are available to potential alternative clients
that do not need to be block-based. For example, we are already
working on a Python front-end (See Section 10, below).

Client-side extensions

The client can be customized using NetsBlox extensions. A NetsBlox
extension is similar to a browser extension in that it can contain arbi-
trary JavaScript that can access and modify the client itself. Extensions
can be loaded automatically via URL parameters, so they can be easily
used to create more structured or customized experiences without any
initial steps for users. To prevent malicious use, any extension hosted
by an untrusted origin must be manually approved by the user (even
when loaded via URL parameters).

NetsBlox extensions utilize an extension API which facilitates com-
mon patterns for customizing the client. These include creating custom
primitive blocks and block categories. The API also supports the cre-
ation of a menu for each loaded extension. One example usage of

NetsBlox extensions can be found in the creation and use of custom



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
Fig. 28. Using a custom autograder to load an assignment (a) and grade a
work-in-progress solution (b).

autograders. Autograders are activity-specific suites of automated tests.
Using client-side extensions, the NetsBlox client was modified to allow
users to select assignments for their course from a custom menu, grade
them within the browser, and even submit them to platforms like
Coursera using a Learning Management System (LMS) API.

Fig. 28(a) shows an assignment being selected from the autograder’s
extension menu. Upon selection, a starter template is loaded for the
assignment along with the associated tests. Once the assignment is
loaded, the extension menu is updated to include an option to grade
the current assignment. This menu item will open the dialog shown in
Fig. 28(b) which displays the output of a set of automated tests for the
assignment.

NetsBlox extensions make the creation of custom autograders pos-
sible, but the process is not necessarily accessible for instructors who
may not be JavaScript developers (or have access to a webserver to
host the files). To lower the barriers to use, we have created a NetsBlox
Service called ‘‘Autograders’’ and a custom block library for creating
and sharing custom autograders within NetsBlox. The Autograders
Service enables users to store configurations for their own autograders.
The configuration is well documented, including an interactive video
walkthrough on autograder creation. Autograders can be simply com-
posed from the official, curated examples—complete with automated
tests—hosted on GitHub. These are particularly easy to include, as there
is a pre-built library with each assignment configuration, available as
a custom block.

Custom assignments can be defined using the custom block library.
An assignment consists of a name, starter template URL, and list of tests.
Tests can currently only evaluate custom blocks defined in the project,
but the configuration is extensible so that more aspects of a project can
be evaluated in the future. The custom block library enables users to
define fixed input/output test cases for the given assignment or even
provide custom code for more involved test cases. An example of each
13
Fig. 29. Creating a custom autograder in NetsBlox.

can be found in Fig. 29. The autograder created here is called ‘‘Example
Grader’’ and consists of a single assignment, which asks students to
make a custom block that will perform the function, ‘‘Multiply by 2.’’
The starter template for this assignment is provided by the ‘‘public
project URL’’ block (a placeholder in the example). There are 2 tests
for the assignment, which demonstrate two different ways to evaluate
the same test case. The first block specifies a fixed input and output
for the block; the second specifies a test which, given the student’s
implementation of the custom block, checks that when called with ‘‘2,’’
it yields the expected result. After the autograder is created, the next
block opens a new tab with the autograder loaded. This enables the
user to test the autograder and, when satisfactory, share the URL that
will automatically load the autograder with their students.

Make your own service

There are multiple ways to add Services to NetsBlox. Since Nets-
Blox is an open-source project, contributors can implement their own
Services in JavaScript and issue pull requests on GitHub. There is also a
mechanism to create an extension server. The new server can be enabled
for specific users or classes in NetsBlox, and the Services it provides
will show up in the call block automatically. In fact, these additional
servers do not even have to be implemented in JavaScript and can be
in any language as long as they implement the RESTful API expected
of NetsBlox Services.

However, most teachers are not software engineers, so there is a
need to be able to add Services from the client side. To address this
need, there is a NetsBlox Service called ‘‘Service Creation’’. This makes
it possible to add one’s own Service, which will then appear in the
‘‘call’’ block pull down menu under the Community and then username
submenus, as shown in Fig. 30.

To create a Service, one simply needs a CSV file with the data
that the Service will supply. The user can drag and drop this file into
the NetsBlox window to convert it into a variable (a two-dimensional
array) automatically. The first row of this CSV file should contain
column headers (e.g., ‘‘year’’, ‘‘Black’’, ‘‘White’’, etc.) as shown in the
example in Fig. 31, which shows how a service was created from a file
containing data on the number of new CS PhD graduates, broken down
by ethnicity.

The user can then pass the variable with the data as an input
argument to the ‘‘createServiceFromTable’’ RPC shown in Fig. 32. If
no options are supplied, the RPC will create a new Service with a
number of default RPCs: (1) ‘getTable’ that returns the entire table,
(2) ‘getValue’ that returns a single element by two indices: the value
in the first column and the column name, (3) one for each column of
the table (e.g., ‘getHispanicColumn’ and (4) one for each column as a
function of the first column (e.g., ‘getAsianByYear’). This latter option
is particularly useful when the data is some kind of time series and the
first column contains the date/time values.

The ‘options’ argument to ServiceCreation’s
‘createServiceFromTable’ RPC enables the user to change these default
behaviors; for example, to specify additional RPCs. It is even possible

to provide a NetsBlox script for any of the desired RPCs, in which case



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

N
a
f
n

e
i
c
s

Fig. 30. User-contributed services.

Fig. 31. Example CSV file containing the number of new CS PhDs in the United States
over 1980–2020 broken down by ethnicity.

Fig. 32. User-specified service creation.

Fig. 33. The newly-created service.

etsBlox translates these into JavaScript and they become the code
ssociated with the RPC. Fig. 33 shows the default RPCs generated
rom the CSV file in Fig. 31. Fig. 34 then shows a simple use of this
ew Service that plots the number of new CS PhDs by ethnicity.

The ServiceCreation service is yet another feature that helps teach-
rs and students to create pedagogically relevant and personally mean-
ngful projects. Instead of emailing the students a data file, a teacher
an create a new Service in a few minutes that becomes available to all
tudents instantly. If some revision needs to be made, the Service can
14
Fig. 34. Code to plot the new CS PhDs data by ethnicity (a) and the resulting chart
(b).

be updated just as easily, and all students, and existing projects, will
have the latest data automatically.

10. Continued learning with python

As we have seen, block-based environments can be very powerful,
and NetsBlox is focused on using this potential to offer an introduction
to advanced CS topics such as distributed computing, cybersecurity,
robotics, and the Internet of Things. However, one recurring criticism
from advanced students is that, despite all of the powerful features, any
block-based environment can still feel more like a toy than a ‘‘real’’
programming language, simply due to its block-based interface [11].
Because of this, students might abandon tools like NetsBlox in favor
of textual languages like Python. However, this is a massive change,
and students might feel discouraged if they cannot easily reproduce
the same advanced behaviors they used to be able to program in
NetsBlox. To ease this transition while preserving most of students’
existing NetsBlox project-based knowledge, we are developing a tool
called PyBlox.

When moving from a block-based to a text-based environment,
it is not just the programming language that changes, but also the
underlying computational model and the IDE. The overarching design
goal with PyBlox is to preserve as much of the NetsBlox experience
as possible and replace only the programming language, moving from
blocks to Python. Hence, PyBlox is a Python-based turtle graphics
environment with a stage, multiple sprites, multiple scripts per sprite,
events, (almost) the same concurrency model as NetsBlox, supporting
RPCs as well as message passing.

PyBlox has its own built-in IDE that supports code highlighting,
context-aware completion suggestions, always-visible documentation
for the selected item (including functions/RPCs), a palette of project-
specific custom blocks that can be dragged and dropped to paste code
snippets, built-in example projects, an experimental NetsBlox to PyBlox
project converter, and more. A screen capture of the work-in-progress
PyBlox IDE is given in Fig. 35.

PyBlox mimics the concurrency model of NetsBlox scripts through
various preprocessing steps applied to students’ code. PyBlox also



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

t

f

u
t
t
f
m
i
F

S

t
g
s
f
B
a
w
a
s
d
a
r
f
T
‘
h
t
t
c
t

h

Fig. 35. The PyBlox IDE showing an air quality index project functionally equivalent
o the one shown in Fig. 5 (all code in the sprite).

Fig. 36. Example PyBlox code. For reference, this is equivalent to the block-based code
rom Fig. 22.

ses the same project breakdown of tabs for different sprites and
he stage, using functions/methods as analogues for scripts and cus-
om blocks, approximating NetsBlox-style event-based computing with
unction decorators, and providing access to all NetsBlox RPCs and
essage passing. Additionally, these Python constructs all have similar

nterfaces to their block-based counterparts. Examples can be seen in
ig. 36.

upporting the transition to text programming

However, regardless of the similarity between NetsBlox and PyBlox,
he change of language does impose some overhead on students. The
oal of PyBlox is to minimize this learning curve, not only by providing
imilar features, but also offering tools that help students find the
eatures that they need. For instance, the default palette of blocks in Py-
lox contains examples for all of the existing function decorators, which
re shown in the block-based form that students are already familiar
ith. Additionally, the contents of the blocks palette is customizable
nd saved in the project file. This allows instructors to hand-pick the
et of blocks they think students would need for a given project and
istribute them to students as a starter project. Further, PyBlox supports
mechanism to have blocks be automatically pulled from an online

epository, meaning instructors could edit the custom blocks palette
or all student projects without actually modifying the project files.
his could be used to correct errors in custom blocks, or to add new

‘hint’’ blocks to help students who get stuck on some sub-task. Another
elpful tool is a curated list of ubiquitous Python packages that can be
oggled on/off to automatically import them into the project without
he students’ needing to write any code. These curated packages include
ustomized descriptions and simple usage examples that are shown in
he documentation panel when hovered over.

PyBlox’s context-aware completion suggestions are invaluable in
elping students find the right methods to call on objects, including
15
both PyBlox-specific sprite/stage methods, as well as Python builtin
functions such as list.append. The always-visible documentation
panel ensures that students have effortless access to information about
any function they are trying to use, including PyBlox-specific utilities
like decorators and RPCs, or even their own custom methods/functions,
as the documentation is extracted in real time from normal Python
docstrings. The documentation panel is similar to the ‘‘help’’ menu for
blocks in NetsBlox, but it does not need to be explicitly opened and
updates automatically with the text cursor. This makes its existence
and usage more obvious, meaning students are more likely to use it.
Though PyBlox is still in development, we have designed it with the
conjecture that listing the methods/fields on objects and presenting
documentation for each entry (common features in modern IDEs) will
encourage students to be more comfortable reading API documentation
early on—an important practice in real-world programming.

Addressing differences in error-handling

In spite of being designed to minimize barriers to transition, there
are still some notable differences between NetsBlox and PyBlox. One
big difference is with error handling. If an error occurs in an RPC, Nets-
Blox simply presents the error message in string form as a return value.
This string is also stored in a special ‘‘error’’ variable. (Successful RPC
invocations clear the error back to the empty string.) This approach
has the unfortunate effect of allowing errors to propagate through a
student’s program. For instance, if the return value is not used or if the
successful return type is also a string (like the error return type), then
there is no chance of discovering the error without explicitly checking
the error block after every RPC invocation. This is tedious, and students
rarely include error-checking logic in their programs. However, this
lack of hard errors is consistent with NetsBlox’s parent language, Snap!,
which generally attempts to avoid hard errors when possible, even in
some cases where it arguably should not. (For instance, indexing out
of bounds or using invalid values for indices, such as 2.3 or hello
simply returns the empty string, ‘‘’’). In contrast, Python and virtually
all textual languages are comparatively much more strict, and give
hard errors (i.e., exceptions) for many of these cases. Because of these
issues with propagating errors in NetsBlox and the motivation of giving
students a realistic introduction to textual languages, it was decided
that PyBlox should instead follow Python and throw exceptions for RPC
errors. Thus, students can rest assured that RPC return values are not
error message strings, and are indeed proper RPC return values. Python-
style exception handling code can be used to catch these errors, but
there is also an opt-in feature to have individual RPC invocations act
just like the NetsBlox version and instead return an error message string
and set a special error state accessible via get_error(). This feature
is used by the experimental NetsBlox to PyBlox project converter to
ensure identical error handling. A consequence of this decision to throw
exceptions by default is that, if error-handling code is not written, some
code that students would write in blocks (which sometimes fails) will
halt that script in PyBlox (but notably not the entire project). However,
the PyBlox exception (which is shown in the ‘‘Program Output’’ panel
of the IDE) includes the exact line number of the error, which, coupled
with the built-in documentation panel in the PyBlox IDE, should make it
easier to identify the problem with the provided RPC inputs and correct
the issue (or add error handling code to allow failures).

Addressing differences in the execution model

Another difference between NetsBlox and PyBlox is in the execution
model. NetsBlox projects, like Snap! projects, are lively, meaning the
project is always running and modifications to the code take effect
immediately, even in a running script. This is a very unorthodox feature
to have in text-based programming environments, and the results of
modifying a script during its execution are uncertain at best for any
non-trivial logic. For example, variables from the old code could be



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

N
h
t
t
r
P
t
t
d
e
w
u
a
r
i
n
d

s
P
p
w
l
r
w
e

e
t
s

1

s
n
c
p
i
h
m
i

t

used with logic from the new code or vice versa, resulting in neither
functioning correctly until a fresh execution of only the new code is
performed. In light of these issues, PyBlox projects are run like ordinary
Python code, with modifications of the program during execution not
affecting the running program.

Another runtime difference is in the concurrency model. NetsBlox
and Snap! are interpreted languages, with very rigid, well-defined
points at which context switching can occur. This provides very strong
guarantees about the sequencing of instructions among various scripts.
However, this is yet another feature that is unorthodox in textual
languages, in which concurrent instructions are arbitrarily sequenced,
even in languages like Python where concurrent scripts cannot truly
execute simultaneously due to the global interpreter lock. PyBlox takes
a best-effort approach, adding thread yield points at locations where
NetsBlox/Snap! would have performed a context switch. The result
roughly imitates the NetsBlox concurrency model without imposing
too much execution overhead. It would be possible to perfectly imitate
the block-based concurrency model if pausing/resuming threads were
supported, but this is not possible in native Python. A related project
called Pytch uses the Skulpt library to emulate Python from javascript
running in the browser. This emulation allows for higher-level features
like pausing/resuming threads, meaning that Pytch could emulate the

etsBlox/Snap! concurrency model more accurately [47]. (On the other
and, the Pytch authors also mention that violations of some of their
iming assumptions can lead to time desynchronization between real
ime and simulator time, as seen by, e.g, the ‘‘wait secs’’ block). Our
esponse to this particular concurrency model issue reflects one of
yBlox’s larger conjectures: that students want to switch from blocks
o Python not because of the fine details of Python itself, but because
hey see it as ‘‘real’’ programming. Because of this, in general, the
esign of PyBlox will make a best-effort approach to provide the same
nvironment and utilities as NetsBlox, but it will not sacrifice vital, real-
orld Python features such as access to native libraries. Further it will
se only abstractions that can be built up from native features such
s OS threads, which inherently lack some sequencing controls. The
esult is that the vast majority of student programs will run virtually
dentically to the block-based equivalent, all while having realistic,
ative-like behaviors that will remain applicable in real-world Python
evelopment.

With all of these affordances, PyBlox serves as a tool to allow
tudents to ‘‘graduate’’ from NetsBlox’s block-based environment to
ython, while still retaining much of their existing perspectives on
roject structure, concurrency models, and advanced CS topics that
ere introduced in NetsBlox. Further, because PyBlox features are

argely isomorphic to NetsBlox, instructors can even (to some extent)
ecycle existing NetsBlox activities and reintroduce them in PyBlox
ith incrementally-added complexity (e.g., reimplementing and then
xtending old projects with new features).

PyBlox is still in active development, but it is available in its current,
xperimental state as a Python package called netsblox. We are in
he process of designing studies to investigate PyBlox’s effectiveness in
upporting knowledge transfer from NetsBlox to PyBlox and Python.

1. Use case: Natural language processing and literary analysis

We have shown how the NetsBlox platform can be used to eliminate
uperficial or ‘‘accidental’’ barriers to advanced CS topics, enabling
ovice programmers to engage conceptually with powerful ideas in
omputing. But not all programming novices are youths. Another im-
ortant ongoing example of using NetsBlox in interdisciplinary work
nvolves a project in the Digital Humanities [48]. Here, we describe
ow NetsBlox has been leveraged to introduce powerful ideas and to
ediate between exploration in a visual environment and scaled-up

mplementation in a Python notebook.
Working with faculty collaborators in the Vanderbilt Libraries and
he English Department, we are using NetsBlox to support a two-way

16
Fig. 37. The RPCs available in the ParallelDots Service.

exchange of disciplinary practices, integrating (a) Computer Science
understandings of the models used in AI and Natural Language Pro-
cessing (NLP) and the computational techniques used in integrating
them into analytic pipelines, with (b) Literary and Cultural Studies
understandings of phenomena around shifts in language and social
constructs as reflected in late 18th and early 19th century British
periodical literature. In this article, we focus on the first aspect—the
way that NetsBlox has enabled challenging CS concepts in AI and NLP
to be grasped and used creatively by undergraduates and professors in
the Humanities.

For the past three years, we have been working with undergraduates
from both computer science and the humanities to explore topics
relevant to our English department colleague’s research on analyzing
19th-century British periodicals. To work effectively with a corpus of
over 4 million articles, we have been running exploratory analyses in a
collaborative cluster computing environment, using PySpark notebooks
on Amazon EMR and, more recently, Databricks’s Lakehouse platform.
These are powerful computing environments, but in order for all of our
participants to be able to bring their insights to bear and contribute
actively to the collaborative work, it is important that they all have a
fundamental understanding of the kinds of computational operations
they can execute.

NetsBlox has enabled us to apply many of our NLP tools and
concepts in a visual and interactive setting before bringing them to the
PySpark notebook environment. While we have in fact connected Nets-
Blox to the full British periodicals repository, we have found that after
using the visual environment to engage playfully and iteratively with
texts, tools, and techniques on a smaller corpus, students have been
able to make the leap to notebooks, which have their own advantages,
especially when operating at the scale of the entire repository.

Here, we provide an example of how NetsBlox Services have enabled
us to provide a rich introduction to the strengths and limitations of
AI tools: in this case, Sentiment Analysis models. Under its Language
category, NetsBlox offers several Services, one of which provides an
interface to ParallelDots, a commercial tool for NLP including sentiment
analysis. Fig. 37 shows the RPCs available in this Service, each of
which takes a text argument (with ‘‘getSimilarity’’ taking two). While
such tools will eventually be incorporated into pipelines that select
articles from the corpus and segment them into chunks to analyze
(e.g., sentences or groups of sentences), our initial explorations aimed
to promote understanding of these tools’ independent operation, so that
they did not appear to students as ‘black boxes.’

Beyond the technical aspect of understanding return values and how
to process them in a chain of actions, our work with NLP tools in
NetsBlox involves more playful and collaborative forms of exploration
to understand the judgments made by the models in question. For
instance, with Sentiment Analysis, we have asked students to extend
the Chat application described in Fig. 9 to run sentiment analysis on
the chat entries and color the text of the on-screen printout accordingly.
This integrates the technical skill of operating on the model’s judgments
(and the format of the return) with an environment that allows the

classroom group to experiment collaboratively and iteratively to make



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

t
b
r
a
t
t

1

c
v
A
v
w
N
t
a

s
S
d
b
t
g
r
p
p
c
u
i
t
o

‘
u
t
s
w
i

C
i
c
c
p
h
f
v
r

f
a
p
m
p
b
t
S
u
h

c
b
b
g
t
p
s
s
t
M
o
s
c
G

p
Z
d
n
n
o
o
d
c
t
c

o
o
p
t
s
p
n
i
f
B
s
t
c
c
i
r
p
f
g
p

w
p
p
a
l

sense of how the model ‘‘thinks’’, how it can be fooled, and more
generally, what its limitations are.

In our latest implementation of this activity, students made discov-
eries about the length of text that seemed to work best with the model;
about how small changes (even in punctuation) could have significant
impact on the model’s judgment; and about how the model worked
on informal chat-like entries as compared with passages they copy-
pasted from articles in the British Periodicals corpus. These findings
led students to study the documentation of the services, to learn about
the training-sets that were used for them, and to reason about how any
effort to do sentiment analysis on the British Periodicals corpus might
need to involve domain-adaptation and/or other fine-tuning steps.

Turning from the tools of AI and NLP to the computational tech-
niques involved in using them in practice, it was also important for
students to understand and be able to mentally trace operations involv-
ing higher-order functions such as map. Here, it has been very powerful
o have a visual environment where the relevant blocks can be assem-
led, hooked up to a smaller corpus of sample articles, clicked to be
un, tested, and re-assembled. Once students created, tested, discussed,
nd refined block stacks that ran simple pipelines in NetsBlox, we found
hat they were in a much stronger position to interpret and construct
ext-based operations within PySpark notebooks.

2. Evaluation

NetsBlox was created to explore the core premise that a block-based
onstruction environment could be developed that would make ad-
anced distributed computing concepts accessible to younger learners.
s such, the design and development work described in this article pro-
ides the foundation for future research on effectiveness. Nevertheless,
e have already begun to conduct evaluation studies to assess whether
etsBlox is successful in realizing its design goals, and we have begun

o use NetsBlox in empirical studies that explore different conditions
nd aspects of student learning.

In particular, we have conducted several small-scale evaluation
tudies of NetsBlox through summer camps and in after-school settings.
ince we cannot assume prior programming knowledge, the first two
ays of a week-long camp usually focus on introductory programming
efore tackling the more advanced topics that NetsBlox was designed to
each. These studies have shown both statistically significant learning
ains and increased student interest and engagement. Broll et al. report
esults from two summer camps that demonstrated between 15 and 20
ercentage point gains in both CT and networking knowledge, using a
re- and post-test [49]. Four summer camps with 62 students total were
onducted in 2018 and 2019 focusing on robotics and cybersecurity
sing physical robots [35,50]. Significant learning gains were achieved
n both CT and cybersecurity. A quote from a participating high school
eacher illustrates the level of student engagement: ‘‘I did not see them
n cell phones; they were engaged with programming their robot’’.

Feedback after a professional development workshop on
Distributed Computing using NetsBlox’ revealed teachers’ ease with
sing RPCs and message passing blocks; their excitement about how
hese features could expand students’ projects to include various data
ources from the internet; and their interest in using NetsBlox in various
ays in their schools—as part of teaching CS topics such as networks

n AP CS Principles or in after-school camps [51].
In a majority-female, virtual high school camp on ‘Climate Change &

omputing,’ students examined issues of climate change through work-
ng with real climate datasets, using multi-dimensional data structures,
oding data visualizations, and engaging in data analyses. End-of-
amp surveys probing students’ perceptions of computing suggested the
ositive shift fostered by this experience. Some students expressed a-
a’s that computer science ‘‘is more than making a character move and
ollow directions’’ and that it instead can be a ‘‘useful tool’’ to pull in a
ariety of real data to analyze and visualize and ‘‘learn and discover’’

eal phenomena [52]. c

17
For several years now, NetsBlox has also been used to introduce
irst-year college students to programming during the first two weeks of
n introductory programming course at Vanderbilt. The course teaches
rogramming with MATLAB to non-CS engineering students. Anony-
ous surveys indicate that students with previous programming ex-
erience would rather not spend time with block-based programming,
ut most students appreciate the gentle introduction before switching
o the main text-based language of the course. Finally, as described in
ection 11, NetsBlox has enabled a heterogeneous group of undergrad-
ates of all levels and majors to engage in cutting-edge analyses of large
istorical literary corpora.

These studies suggest that NetsBlox is highly usable and that novices
an engage with key concepts in distributed computing through its
lock-based implementation of RPCs and message passing. The design-
ased research of these studies has also produced some principles that
uide ongoing implementations with NetsBlox. The curricula used in
hese studies are all project-based. Many times we present a starter
roject, e.g., a current weather app or a chat program, and then let
tudents work on enhancing it any way they like. For example, one
tudent team in one of the camps added their own encryption algorithm
o the chat project, so that they could keep their conversation private.
ost camps conclude with an individual or team project of the students’

wn choosing. Innovative examples include various multi-player games
uch as a ‘‘Tron’’ clone, an interactive map interface for learning about
ountry demographics, and a running route planner created on top of
oogle Maps.

NetsBlox’s support for collaboration has also enabled multiple em-
irical studies comparing approaches to collaborative programming.
acharia et al. compared students working in driver–navigator or
river–driver pairs, showing that the driver–driver configuration did
ot have the perceived imbalance in student agency that driver–
avigator did [53]. These results align with a 2020 study by Tsan, et al.
n pair programming in 4th and 5th grade, comparing programming
n one computer versus students both acting as drivers on their own
evices [54]. Student interviews suggested that the one-computer
ondition helped them communicate more with their partner, and the
wo-computer condition was preferred, but that students struggled to
oordinate the programming with their partner.

Lytle et al. compared three types of driver–driver NetsBlox collab-
ration in a middle school summer camp [55]. In this study, pairs
f students worked on a series of four game-themed programming
rojects using three different collaboration styles in NetsBlox: separate,
ogether, and puzzle. ‘‘Separate’’ involved students programming two
eparate NetsBlox Roles to complete a pong game, with one student
rogramming the Left Paddle role and the other taking the Right—with
o collaborative editing across Roles. ‘‘Together’’ involved two students
n the same Role, with synchronous editing to create a single paddle
or Brick Breaker. ‘‘Puzzle’’ involved collaborative programming of a
asket sprite to collect falling fruit—but with the blocks partitioned
o that each partner could only access half of them, requiring partners
o talk to coordinate efforts. In a fourth game project, 16 of 24 pairs
hose Puzzle while 8 chose Together-style collaboration, with many
iting that working with complementary blocks was more fun and
nteresting. An overwhelming majority expressed interest in collabo-
ative programming in the future, with 27 preferring Puzzle-style, 17
referring Together-style, and only 4 preferring to work Separately on
uture projects. These statistics demonstrate that students in middle
rades 6–8 (aged 11–14) appreciate collaboration while learning to
rogram!

Empirical studies with NetsBlox in the future can explore an ever-
idening range of topics that are of interest to Computing and Com-
uter Science Education. An important part of the strength of the
latform is its ability to present a range of distributed computing ideas
nd applications in a coherent and unified way. We look forward to
onger-term studies that will enable us to document how students draw

onceptual connections between the principles of designing distributed



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
Fig. 38. Clicking on an interactive map of the world (a) shows up-to-date COVID data
in the selected country (b).

systems that enable users to interact with other humans, robots, IoT
sensors, web-based data sources and services, and more. Through this
line of work, we will be able to test and refine our conjectures about
how distributed computing can serve as an entry point to big ideas in
computer science, attracting a broader population of learners to engage
with these concepts in personally meaningful ways.

13. Conclusions

There is a widespread perception among high school-aged students
that block-based environments are toys and not real programming
languages [2,11]. Our counter-argument in this article has been that
the most limiting factor in introductory programming environments
(whether text- or block-based) is being closed—‘‘walled off’’ and dis-
connected from data, web services, and other applications. There is
only so much one can do in a closed environment, and only so much
relevance that a closed environment can achieve, when contrasted with
the typical teenager’s phone or laptop, where the power of the entire
internet is one click away.

NetsBlox demonstrates that introductory programming experiences
do not have to be limited in this way. Leveraging modern web technolo-
gies and the affordances of block-based programming environments can
enable novice programmers to create personally-meaningful projects
that solve real problems or otherwise matter to them—making program-
ming more relevant, more motivating, and more interesting. Projects
such as distributed multi-player games, a shared whiteboard, and in-
teractive global maps with superimposed climate data place powerful,
creative possibilities in young learners’ hands. Being able to utilize
gadgets—phones, voice assistants, or robots—makes the experience all
the more compelling. Both teachers and students from middle grades
up can successfully create such programs using NetsBlox. Furthermore,
such projects can democratize access to learning important modern
computing concepts, such as distributed computing, cybersecurity, and
computer networking. Until now, these topics have only been taught
to computing undergraduates, despite their importance to computer
literacy for everyone.

Let us summarize what is possible, once we remove the walls around

a block-based programming environment:

18
• Student programs can access the wealth of information and ser-
vices available on the internet. This makes it possible to create all
kinds of STEAM-related projects, sparking the interest of students
who may not be attracted to traditional approaches to comput-
ing. For example, Fig. 38 shows a project visualizing up-to-date
pandemic information anywhere in the world.

• Being able to create programs that can communicate with each
other opens up a world of online multi-player games and social
apps for students to create.

• A novel approach to robot and device programming becomes
possible. This enables collaborative robotics, remote control of
games and robots with mobile devices, voice assistant integration,
and engaging, hands-on approaches to teaching cybersecurity.

• Novel forms of collaboration, including truly remote teamwork
and sharing of in-process work can be supported seamlessly. In
the age of COVID-19, this has become a crucial requirement, but
the advantages of flexible collaboration will endure beyond the
pandemic.

• Connections to other powerful environments for expressing com-
putational logic, such as Python and PySpark notebooks, can ease
the transfer of the core ideas learned in NetsBlox to settings they
encounter in the future.

As we have shown, a lot of added functionality becomes available
once programs have access to the internet, in an environment where
connectivity and distributed computing are treated as ‘first-class’ design
elements. The most important consideration is to keep the abstractions
that provide this access simple and intuitive. When a new extension is
provided to the typical block-based environment, it comes with many
new blocks. This makes it difficult both to learn the related concepts
and even to find the blocks, especially if multiple extensions are used.
Instead, a more general mechanism should be provided. NetsBlox added
just two new abstractions and introduced just three new blocks (call,
send, when I receive) to those typical of block-based environments, in
order to provide the wide array of new capabilities described in this
article. Furthermore, these two new abstractions are similar to ones that
many students are already familiar with: RPCs are like custom blocks,
and messages are similar to events. This makes them intuitive and easy
to learn and use. Furthermore, the analogies between these concepts are
powerful tools for reasoning about key ideas in distributed computing.
This makes NetsBlox a conceptual tool that extends the promise of
block-based environments to offer a restructuration [9] of introductory
computer science.

Another important consideration for any learning environment is to
keep the environment extensible, even by the users themselves. Adding
NetsBlox Services, including support for new devices, does not require
new custom blocks or any changes to the client code or the interface.
Moreover, in NetsBlox, users themselves can add their own online data
Services for everyone to use without leaving the environment.

Once we show students the wide variety of advanced projects and
technologies that they can create with just a few blocks of code, they
quickly reconsider the misconception that block-based programming
is just for little kids. As two students said last summer: ‘‘It’s really
cool to see real world experience and real world data and real world
things’’, and these projects help ‘‘a lot more people think [block-based
programming] was really cool’’. A teacher added: ‘‘With the virtual
delivery of my course, allowing students to collaborate in real time
on a project, and understand HOW the collaboration works is a great
learning experience...’’.

CRediT authorship contribution statement

Corey Brady: Conceptualization, Methodology, Writing – origi-
nal draft, Writing – review & editing. Brian Broll: Conceptualiza-
tion, Methodology, Software, Writing – original draft. Gordon Stein:



C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156

L
&

D

c
i

A

F
S
t
S
p
r
J
e
p
t
A
b

R

Methodology, Software, Writing – original draft. Devin Jean: Method-
ology, Software, Writing – original draft. Shuchi Grover: Concep-
tualization, Methodology, Formal analysis, Writing – original draft,
Funding acquisition. Veronica Cateté: Writing – original draft. Tiffany
Barnes: Conceptualization, Methodology, Funding acquisition. Ákos
édeczi: Conceptualization, Writing – original draft, Writing – review
editing, Supervision, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This material is based upon work supported by the National Science
oundation, United States under Grant No. 1835874, the National
ecurity Agency, United States (H98230-18-D-0010) and the Computa-
ional Thinking and Learning Initiative at Vanderbilt University, United
tates. Any opinions, findings, and conclusions or recommendations ex-
ressed in this material are those of the authors and do not necessarily
eflect the views of the funding agencies. The authors are grateful to
ens Mönig, Brian Harvey and Dan Garcia for the wonderful Snap!
nvironment without which NetsBlox would not exist. A number of
eople have made important contributions to NetsBlox. We are grateful
o Hamid Zare, Miklós Maróti, Péter Völgyesi, János Sallai and Cliff
nderson. Many undergraduate and high school students contributed
y either adding new services to or finding bugs in NetsBlox.

eferences

[1] C. Solomon, B. Harvey, K. Kahn, H. Lieberman, M.L. Miller, M. Minsky, A. Papert,
B. Silverman, History of logo, in: Proceedings of the ACM on Programming
Languages, Vol. 4, 2020, pp. 1–66.

[2] D. Weintrop, U. Wilensky, Comparing block-based and text-based programming
in high school computer science classrooms, ACM Trans. Comput. Educ. (TOCE)
18 (1) (2017) 1–25.

[3] D. Weintrop, U. Wilensky, Robobuilder: a computational thinking game, in:
SIGCSE, Vol. 13, 2013, p. 736.

[4] J.H. Maloney, K. Peppler, Y. Kafai, M. Resnick, N. Rusk, Programming by choice:
urban youth learning programming with scratch, in: ACM SIGCSE Bull., 40, ACM,
2008, pp. 367–371.

[5] T.W. Price, T. Barnes, Comparing textual and block interfaces in a novice
programming environment, in: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research, 2015, pp. 91–99.

[6] N. Smith, C. Sutcliffe, L. Sandvik, Code club: bringing programming to UK
primary schools through scratch, in: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, 2014, pp. 517–522.

[7] S. Grover, R. Pea, S. Cooper, Designing for deeper learning in a blended computer
science course for middle school students, Comput. Sci. Educ. 25 (2) (2015)
199–237.

[8] S. Grover, R. Pea, S. Cooper, Factors influencing computer science learning
in middle school, in: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, 2016, pp. 552–557.

[9] U. Wilensky, S. Papert, Restructurations: Reformulations of knowledge disciplines
through new representational forms, Constructionism 17 (2010) 1–15.

[10] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books,
Inc., 1980.

[11] B. DiSalvo, Graphical qualities of educational technology: Using drag-and-drop
and text-based programs for introductory computer science, IEEE Comput. Graph.
Appl. 34 (6) (2014) 12–15.

[12] D. Weintrop, U. Wilensky, To block or not to block, that is the question:
students’ perceptions of blocks-based programming, in: Proceedings of the 14th
International Conference on Interaction Design and Children, 2015, pp. 199–208.

[13] F.J. Rodríguez, K.M. Price, K.E. Boyer, Exploring the pair programming process:
Characteristics of effective collaboration, in: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17,
Association for Computing Machinery, New York, NY, USA, 2017, pp. 507–512,
http://dx.doi.org/10.1145/3017680.3017748.

[14] Y.B. Kafai, From computational thinking to computational participation in K–12
education, Commun. ACM 59 (8) (2016) 26–27.
19
[15] B. Broll, A. Lédeczi, G. Stein, D. Jean, C. Brady, S. Grover, V. Catete, T. Barnes,
Removing the walls around visual educational programming environments, in:
2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE, 2021, pp. 1–9.

[16] NetsBlox website, 2022, https://netsblox.org Cited March 1, 2022.
[17] B. Broll, A. Lédeczi, P. Volgyesi, J. Sallai, M. Maroti, A. Carrillo, S.L. Weeden-

Wright, C. Vanags, J.D. Swartz, M. Lu, A visual programming environment for
learning distributed programming, in: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, ACM, 2017, pp. 81–86.

[18] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick, Scratch: A sneak
preview, in: Proceedings of the Second International Conference on Creating,
Connecting and Collaborating Through Computing, in: C5 ’04, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 104–109, http://dx.doi.org/10.1109/
C5.2004.33.

[19] S. Cooper, W. Dann, R. Pausch, Alice: a 3-D tool for introductory programming
concepts, J. Comput. Sci. Coll. 15 (5) (2000) 107–116.

[20] A. Repenning, Agentsheets®: An interactive simulation environment with
end-user programmable agents, Interaction (2000).

[21] A. Schmidt, Increasing computer literacy with the BBC micro: bit, IEEE Pervasive
Comput. 15 (2) (2016) 5–7.

[22] B.M. Collective, D. Shaw, Makey Makey: improvising tangible and nature-based
user interfaces, in: Proceedings of the Sixth International Conference on Tangible,
Embedded and Embodied Interaction, 2012, pp. 367–370.

[23] B. Harvey, D.D. Garcia, T. Barnes, N. Titterton, O. Miller, D. Armendariz, J.
McKinsey, Z. Machardy, E. Lemon, S. Morris, J. Paley, Snap! (build your own
blocks), in: Proceedings of the 45th ACM Technical Symposium on Computer
Science Education, SIGCSE ’14, ACM, New York, NY, USA, 2014, p. 749,
http://dx.doi.org/10.1145/2538862.2539022, URL: http://doi.acm.org/10.1145/
2538862.2539022.

[24] A. Kelly, L. Finch, M. Bolles, R.B. Shapiro, BlockyTalky: New programmable
tools to enable students’ learning networks, Int. J. Child-Comput. Interact. 18
(2018) 8–18, http://dx.doi.org/10.1016/j.ijcci.2018.03.004, URL: http://www.
sciencedirect.com/science/article/pii/S2212868918300394.

[25] E. Upton, G. Halfacree, Meet the Raspberry Pi, John Wiley & Sons, 2012.
[26] S.C. Pokress, J.J.D. Veiga, MIT app inventor: Enabling personal mobile

computing, 2013, arXiv:1310.2830.
[27] L. Moroney, The firebase realtime database, in: The Definitive Guide To Firebase,

Springer, 2017, pp. 51–71.
[28] K.P. Birman, Consistency in distributed systems, in: Reliable Distributed Systems:

Technologies, Web Services, and Applications, Springer, 2005, pp. 375–390.
[29] B.B. Lim, C. Jong, P. Mahatanankoon, On integrating web services from

the ground up into CS1/CS2, in: Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, 2005, pp. 241–245.

[30] L. Assunção, A.L. Osório, Teaching web services using. NET platform, in: Pro-
ceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education, 2006, pp. 339–339.

[31] D. Garcia, B. Harvey, T. Barnes, The beauty and joy of computing, ACM Inroads
6 (4) (2015) 71–79.

[32] D. Franklin, D. Weintrop, J. Palmer, M. Coenraad, M. Cobian, K. Beck, A.
Rasmussen, S. Krause, M. White, M. Anaya, Z. Crenshaw, Scratch encore:
The design and pilot of a culturally-relevant intermediate scratch curriculum,
in: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 794–800, http://dx.doi.org/10.1145/3328778.3366912.

[33] S.J. Garber, Searching for good science: the cancellation of NASA’s SETI program,
J. Br. Interplanet. Soc. 52 (1999) 3–12.

[34] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Leboisky, Seti@home-
massively distributed computing for SETI, Comput. Sci. Eng. 3 (1) (2001)
78–83.

[35] Á. Lédeczi, M. Metelko, X. Koutsoukos, G. Biswas, M. Maróti, H. Zare, B. Yett,
N. Hutchins, B. Broll, P. Völgyesi, M.B. Smith, T. Darrah, Teaching cybersecurity
with networked robots, in: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, ACM, 2019, pp. 885–891, http://dx.doi.org/10.
1145/3287324.3287450.

[36] BirdBrain Technologies, Remote robots, 2022, https://www.
birdbraintechnologies.com/remote-robots/ Cited March 1, 2022.

[37] G. Stein, A. Lédeczi, Enabling collaborative distance robotics education for novice
programmers, in: 2021 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE, 2021, pp. 1–5.

[38] E.B. Witherspoon, R.M. Higashi, C.D. Schunn, E.C. Baehr, R. Shoop, Developing
computational thinking through a virtual robotics programming curriculum, ACM
Trans. Comput. Educ. 18 (1) (2017) http://dx.doi.org/10.1145/3104982.

[39] B. Bennett, Accurate Distance Calculation using GPS while Performing Low Speed
Activity (Master’s thesis), University of Oregon, 2018.

[40] M. Shahin, C. Gonsalvez, J. Whittle, C. Chen, L. Li, X. Xia, How secondary
school girls perceive computational thinking practices through collaborative
programming with the micro: bit, J. Syst. Softw. 183 (2022) 111107.

[41] S. Grover, R. Pea, Computational thinking: A competency whose time has come,
in: Computer Science Education: Perspectives on Teaching and Learning in
School, Vol. 19, Bloomsbury Publishing, 2018.

http://refhub.elsevier.com/S2590-1184(22)00053-3/sb2
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb2
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb2
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb2
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb2
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb3
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb3
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb3
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb4
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb4
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb4
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb4
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb4
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb7
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb7
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb7
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb7
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb7
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb9
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb9
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb9
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb10
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb10
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb10
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb11
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb11
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb11
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb11
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb11
http://dx.doi.org/10.1145/3017680.3017748
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb14
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb14
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb14
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb15
https://netsblox.org
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb17
http://dx.doi.org/10.1109/C5.2004.33
http://dx.doi.org/10.1109/C5.2004.33
http://dx.doi.org/10.1109/C5.2004.33
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb19
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb19
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb19
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb20
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb20
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb20
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb21
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb21
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb21
http://dx.doi.org/10.1145/2538862.2539022
http://doi.acm.org/10.1145/2538862.2539022
http://doi.acm.org/10.1145/2538862.2539022
http://doi.acm.org/10.1145/2538862.2539022
http://dx.doi.org/10.1016/j.ijcci.2018.03.004
http://www.sciencedirect.com/science/article/pii/S2212868918300394
http://www.sciencedirect.com/science/article/pii/S2212868918300394
http://www.sciencedirect.com/science/article/pii/S2212868918300394
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb25
http://arxiv.org/abs/1310.2830
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb27
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb27
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb27
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb28
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb28
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb28
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb31
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb31
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb31
http://dx.doi.org/10.1145/3328778.3366912
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb33
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb33
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb33
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb34
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb34
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb34
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb34
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb34
http://dx.doi.org/10.1145/3287324.3287450
http://dx.doi.org/10.1145/3287324.3287450
http://dx.doi.org/10.1145/3287324.3287450
https://www.birdbraintechnologies.com/remote-robots/
https://www.birdbraintechnologies.com/remote-robots/
https://www.birdbraintechnologies.com/remote-robots/
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb37
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb37
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb37
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb37
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb37
http://dx.doi.org/10.1145/3104982
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb39
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb39
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb39
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb40
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb40
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb40
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb40
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb40
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb41
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb41
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb41
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb41
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb41


C. Brady, B. Broll, G. Stein et al. Journal of Computer Languages 73 (2022) 101156
[42] C. Brady, N. Holbert, F. Soylu, M. Novak, U. Wilensky, Sandboxes for
model-based inquiry, J. Sci. Educ. Technol. 24 (2–3) (2015) 265–286.

[43] C. Brady, W. Stroup, A. Petrosino, U. Wilensky, Group-based simulation and
modelling: Technology supports for social constructionism, in: Proceedings of
Constructionism 2018, Vilnius University, 2018.

[44] W. Stroup, N. Ares, R. Lesh, A. Hurford, Diversity by design: The what, why and
how of generativity in next-generation classroom networks, 2007.

[45] W.M. Stroup, N.M. Ares, A.C. Hurford, A dialectic analysis of generativity: Issues
of network-supported design in mathematics and science, Math. Think. Learn. 7
(3) (2005) 181–206.

[46] R. Lesh, M. Hoover, B. Hole, A. Kelly, T.R. Post, Principles for developing
thought-revealing activities for students and teachers, in: Research Design in
Mathematics and Science Education, Lawrence Erlbaum Associates, Inc., 2000,
pp. 591–646.

[47] B. North, G. Strong, Pytch, https://www.pytch.org/doc/vm/developer/threading-
model.html.

[48] C.B. Anderson, C.E. Brady, B. Broll, L.T. Ramey, Human-centered computing for
humanists: Case studies from the computational thinking and learning initiative
at vanderbilt university, in: DH 2020, 2020.

[49] B. Broll, Á. Lédeczi, H. Zare, D.N. Do, J. Sallai, P. Völgyesi, M. Maróti, L.
Brown, C. Vanags, A visual programming environment for introducing distributed
computing to secondary education, J. Parallel Distrib. Comput. 118 (2018)
189–200.

[50] B. Yett, N. Hutchins, G. Stein, H. Zare, C. Snyder, G. Biswas, M. Metelko,
Á. Lédeczi, A hands-on cybersecurity curriculum using a robotics platform,
in: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, 2020, pp. 1040–1046.
20
[51] S. Grover, V. Cateté, T. Barnes, M. Hill, A. Ledeczi, B. Broll, FIRST principles to
design for online, synchronous high school CS teacher training and curriculum
co-design, in: Koli Calling’20: Proceedings of the 20th Koli Calling International
Conference on Computing Education Research, 2020, pp. 1–5.

[52] S. Grover, J. Oster, A. Ledeczi, B. Broll, M. Deweese, Climate science, data science
and distributed computing to build teen students’ positive perceptions of CS,
in: Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education Vol. 2, 2022, pp. 1101.

[53] Z. Zacharia, D. Boulden, J. Vandenberg, J. Tsan, C. Lynch, E. Wiebe, K.
Boyer, Collaborative talk across two pair-programming configurations, in: A
Wide Lens: Combining Embodied, Enactive, Extended, and Embedded Learning
in Collaborative Settings, 13th International Conference on Computer Supported
Collaborative Learning (CSCL) 2019, Vol. 1, 2019.

[54] J. Tsan, J. Vandenberg, Z. Zakaria, J.B. Wiggins, A.R. Webber, A. Bradbury, C.
Lynch, E. Wiebe, K.E. Boyer, A comparison of two pair programming configu-
rations for upper elementary students, SIGCSE ’20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 346–352, http://dx.doi.org/10.1145/
3328778.3366941.

[55] N. Lytle, A. Milliken, V. Cateté, T. Barnes, Investigating different assignment
designs to promote collaboration in block-based environments, in: Proceedings
of the 51st ACM Technical Symposium on Computer Science Education, 2020,
pp. 832–838.

http://refhub.elsevier.com/S2590-1184(22)00053-3/sb42
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb42
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb42
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb43
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb43
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb43
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb43
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb43
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb44
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb44
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb44
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb45
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb45
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb45
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb45
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb45
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb46
https://www.pytch.org/doc/vm/developer/threading-model.html
https://www.pytch.org/doc/vm/developer/threading-model.html
https://www.pytch.org/doc/vm/developer/threading-model.html
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb48
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb48
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb48
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb48
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb48
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb49
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb51
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://refhub.elsevier.com/S2590-1184(22)00053-3/sb53
http://dx.doi.org/10.1145/3328778.3366941
http://dx.doi.org/10.1145/3328778.3366941
http://dx.doi.org/10.1145/3328778.3366941

	Block-based abstractions and expansive services to make advanced computing concepts accessible to novices
	Introduction
	Related Work
	Online Data and Web Services
	Communication
	Robotics Reimagined
	Virtual Robotics

	Mobile Device Integration
	Exercise Tracker

	Voice Assistant Integration
	Collaboration
	Activity Galleries

	Extensibility
	Client-side Extensions
	Make your own Service

	Continued Learning with Python
	Supporting the transition to text programming
	Addressing differences in error-handling
	Addressing differences in the execution model

	Use Case: Natural Language Processing and Literary Analysis
	Evaluation
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


